Suppr超能文献

深度学习在低剂量 CT 胸部图像中的去噪:一种定量和定性的图像分析。

Deep Learning Denoising of Low-Dose Computed Tomography Chest Images: A Quantitative and Qualitative Image Analysis.

机构信息

From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health.

Departments of Radiology, Biomedical Engineering, Computer Science, and Electrical Engineering, Stony Brook University, Stony Brook, NY.

出版信息

J Comput Assist Tomogr. 2023;47(2):212-219. doi: 10.1097/RCT.0000000000001405. Epub 2023 Jan 28.

Abstract

PURPOSE

To assess deep learning denoised (DLD) computed tomography (CT) chest images at various low doses by both quantitative and qualitative perceptual image analysis.

METHODS

Simulated noise was inserted into sinogram data from 32 chest CTs acquired at 100 mAs, generating anatomically registered images at 40, 20, 10, and 5 mAs. A DLD model was developed, with 23 scans selected for training, 5 for validation, and 4 for test.Quantitative analysis of perceptual image quality was assessed with Structural SIMilarity Index (SSIM) and Fréchet Inception Distance (FID). Four thoracic radiologists graded overall diagnostic image quality, image artifact, visibility of small structures, and lesion conspicuity. Noise-simulated and denoised image series were evaluated in comparison with one another, and in comparison with standard 100 mAs acquisition at the 4 mAs levels. Statistical tests were conducted at the 2-sided 5% significance level, with multiple comparison correction.

RESULTS

At the same mAs levels, SSIM and FID between noise-simulated and reconstructed DLD images indicated that images were closer to a perfect match with increasing mAs (closer to 1 for SSIM, and 0 for FID).In comparing noise-simulated and DLD images to standard-dose 100-mAs images, DLD improved SSIM and FID. Deep learning denoising improved SSIM of 40-, 20-, 10-, and 5-mAs simulations in comparison with standard-dose 100-mAs images, with change in SSIM from 0.91 to 0.94, 0.87 to 0.93, 0.67 to 0.87, and 0.54 to 0.84, respectively. Deep learning denoising improved FID of 40-, 20-, 10-, and 5-mAs simulations in comparison with standard-dose 100-mAs images, with change in FID from 20 to 13, 46 to 21, 104 to 41, and 148 to 69, respectively.Qualitative image analysis showed no significant difference in lesion conspicuity between DLD images at any mAs in comparison with 100-mAs images. Deep learning denoising images at 10 and 5 mAs were rated lower for overall diagnostic image quality ( P < 0.001), and at 5 mAs lower for overall image artifact and visibility of small structures ( P = 0.002), in comparison with 100 mAs.

CONCLUSIONS

Deep learning denoising resulted in quantitative improvements in image quality. Qualitative assessment demonstrated DLD images at or less than 10 mAs to be rated inferior to standard-dose images.

摘要

目的

通过定量和定性的感知图像分析,评估各种低剂量下深度学习去噪(DLD)的 CT 胸部图像。

方法

从 32 次 100 mAs 采集的胸部 CT 正弦图数据中插入模拟噪声,生成解剖学上注册的 40、20、10 和 5 mAs 图像。开发了一个 DLD 模型,选择 23 次扫描进行训练,5 次进行验证,4 次进行测试。使用结构相似性指数(SSIM)和 Fréchet 初始距离(FID)评估感知图像质量的定量分析。4 名胸部放射科医生对整体诊断图像质量、图像伪影、小结构的可见度和病变显著性进行评分。对噪声模拟和去噪图像系列进行了相互比较,并与 4 mAs 水平的标准 100 mAs 采集进行了比较。使用双侧 5%显著水平的统计检验,并进行了多次比较校正。

结果

在相同的 mAs 水平下,SSIM 和 FID 表明,随着 mAs 的增加,噪声模拟和重建的 DLD 图像与完美匹配越接近(SSIM 更接近 1,FID 为 0)。与标准剂量 100 mAs 图像相比,DLD 提高了噪声模拟和 DLD 图像的 SSIM 和 FID。与标准剂量 100 mAs 图像相比,深度学习去噪提高了 40、20、10 和 5 mAs 模拟的 SSIM,SSIM 分别从 0.91 增加到 0.94、0.87 增加到 0.93、0.67 增加到 0.87 和 0.54 增加到 0.84。与标准剂量 100 mAs 图像相比,深度学习去噪降低了 40、20、10 和 5 mAs 模拟的 FID,FID 分别从 20 降低到 13、46 降低到 21、104 降低到 41 和 148 降低到 69。定性图像分析表明,在任何 mAs 下,DLD 图像与 100 mAs 图像相比,病变显著性均无显著差异。与 100 mAs 相比,10 和 5 mAs 的深度学习去噪图像的整体诊断图像质量评分较低(P < 0.001),5 mAs 的整体图像伪影和小结构的可见度评分较低(P = 0.002)。

结论

深度学习去噪导致图像质量的定量改善。定性评估表明,DLD 图像在 10 mAs 或更低剂量下的评分低于标准剂量图像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验