Suppr超能文献

基于深度学习的去噪技术在动态腹部 CT 降低辐射剂量中的应用:与混合迭代重建方法的标准剂量 CT 比较。

Application of Deep Learning-Based Denoising Technique for Radiation Dose Reduction in Dynamic Abdominal CT: Comparison with Standard-Dose CT Using Hybrid Iterative Reconstruction Method.

机构信息

Department of Radiology, Mie University Hospital, 2-174 Edobashi, 514-8507, Tsu, Mie, Japan.

出版信息

J Digit Imaging. 2023 Aug;36(4):1578-1587. doi: 10.1007/s10278-023-00808-x. Epub 2023 Mar 21.

Abstract

The purpose is to evaluate whether deep learning-based denoising (DLD) algorithm provides sufficient image quality for abdominal computed tomography (CT) with a 30% reduction in radiation dose, compared to standard-dose CT reconstructed with conventional hybrid iterative reconstruction (IR). The subjects consisted of 50 patients who underwent abdominal CT with standard dose and reconstructed with hybrid IR (ASiR-V50%) and another 50 patients who underwent abdominal CT with approximately 30% less dose and reconstructed with ASiR-V50% and DLD at low-, medium- and high-strength (DLD-L, DLD-M and DLD-H, respectively). The standard deviation of attenuation in liver parenchyma was measured as image noise. Contrast-to-noise ratio (CNR) for portal vein on portal venous phase was calculated. Lesion conspicuity in 23 abdominal solid mass on the reduced-dose CT was rated on a 5-point scale: 0 (best) to -4 (markedly inferior). Compared with hybrid IR of standard-dose CT, DLD-H of reduced-dose CT provided significantly lower image noise (portal phase: 9.0 (interquartile range, 8.7-9.4) HU vs 12.0 (11.4-12.7) HU, P < 0.0001) and significantly higher CNR (median, 5.8 (4.4-7.4) vs 4.3 (3.3-5.3), P = 0.0019). As for DLD-M of reduced-dose CT, no significant difference was found in image noise and CNR compared to hybrid IR of standard-dose CT (P > 0.99). Lesion conspicuity scores for DLD-H and DLD-M were significantly better than hybrid IR (P < 0.05). Dynamic contrast-enhanced abdominal CT acquired with approximately 30% lower radiation dose and generated with the DLD algorithm exhibit lower image noise and higher CNR compared to standard-dose CT with hybrid IR.

摘要

目的是评估与使用常规混合迭代重建(IR)技术对标准剂量 CT 进行重建相比,基于深度学习的降噪(DLD)算法在降低 30%辐射剂量的情况下,是否能为腹部 CT 提供足够的图像质量。该研究共纳入 100 例患者,其中 50 例患者接受标准剂量腹部 CT 扫描和混合 IR 重建(ASiR-V50%),另外 50 例患者接受约 30%低剂量腹部 CT 扫描和 ASiR-V50%与 DLD 低、中、高强度(DLD-L、DLD-M 和 DLD-H)联合重建。测量肝实质衰减的标准差作为图像噪声。计算门静脉期门静脉的对比噪声比(CNR)。通过 5 分制评估低剂量 CT 上 23 个腹部实性肿块的病灶显示情况:0(最佳)至-4(明显劣于)。与标准剂量 CT 的混合 IR 相比,低剂量 CT 的 DLD-H 提供了显著更低的图像噪声(门静脉期:9.0(四分位间距,8.7-9.4)HU 与 12.0(11.4-12.7)HU,P<0.0001)和显著更高的 CNR(中位数,5.8(4.4-7.4)与 4.3(3.3-5.3),P=0.0019)。对于低剂量 CT 的 DLD-M,与标准剂量 CT 的混合 IR 相比,图像噪声和 CNR 没有显著差异(P>0.99)。DLD-H 和 DLD-M 的病灶显示评分明显优于混合 IR(P<0.05)。与使用混合 IR 对标准剂量 CT 进行重建相比,使用约 30%低剂量辐射和 DLD 算法生成的动态对比增强腹部 CT 具有更低的图像噪声和更高的 CNR。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验