Suppr超能文献

使用与卷积神经网络耦合的二氧化硅光纤 SERS 探针在 10 米尺度上进行远程 SERS 检测。

Remote SERS detection at a 10-m scale using silica fiber SERS probes coupled with a convolutional neural network.

出版信息

Opt Lett. 2023 Feb 15;48(4):896-899. doi: 10.1364/OL.483939.

Abstract

A silica fiber surface-enhanced Raman scattering (SERS) probe provides a practical way for remote SERS detection of analytes, but it faces the major bottleneck that the relatively large Raman background of silica fiber itself greatly limits the remote detection sensitivity and distance. In this article, we developed a convolutional neural network (CNN)-based deep learning algorithm to effectively remove the Raman background of silica fiber itself and thus significantly improved the remote detection capability of the silica fiber SERS probes. The CNN model was constructed based on a U-Net architecture and instead of concatenating, the residual connection was adopted to fully leverage the features of both the shallow and deep layers. After training, this CNN model presented an excellent background removal capacity and thus improved the detection sensitivity by an order of magnitude compared with the conventional reference spectrum method (RSM). By combining the CNN algorithm and the highly sensitive fiber SERS probes fabricated by the laser-induced evaporation self-assembly method, a limit of detection (LOD) as low as 10 M for Rh6G solution was achieved with a long detection distance of 10 m. To the best of our knowledge, this is the first report of remote SERS detection at a 10-m scale with fiber SERS probes. As the proposed remote detection system with silica fiber SERS probes was very simple and low cost, this work may find important applications in hazardous detection, contaminant monitoring, and other remote spectroscopic detection in biomedicine and environmental sciences.

摘要

基于卷积神经网络的光纤表面增强拉曼散射探针的远程拉曼信号去除方法及应用

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验