Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tenn.
Department of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
J Thorac Cardiovasc Surg. 2023 Sep;166(3):669-678.e4. doi: 10.1016/j.jtcvs.2022.12.014. Epub 2022 Dec 23.
Indeterminate pulmonary nodules (IPNs) represent a significant diagnostic burden in health care. We aimed to compare a combination clinical prediction model (Mayo Clinic model), fungal (histoplasmosis serology), imaging (computed tomography [CT] radiomics), and cancer (high-sensitivity cytokeratin fraction 21; hsCYFRA 21-1) biomarker approach to a validated prediction model in diagnosing lung cancer.
A prospective specimen collection, retrospective blinded evaluation study was performed in 3 independent cohorts with 6- to 30-mm IPNs (n = 281). Serum histoplasmosis immunoglobulin G and immunoglobulin M antibodies and hsCYFRA 21-1 levels were measured and a validated CT radiomic score was calculated. Multivariable logistic regression models were estimated with Mayo Clinic model variables, histoplasmosis antibody levels, CT radiomic score, and hsCYFRA 21-1. Diagnostic performance of the combination model was compared with that of the Mayo Clinic model. Bias-corrected clinical net reclassification index (cNRI) was used to estimate the clinical utility of a combination biomarker approach.
A total of 281 patients were included (111 from a histoplasmosis-endemic region). The combination biomarker model including the Mayo Clinic model score, histoplasmosis antibody levels, radiomics, and hsCYFRA 21-1 level showed improved diagnostic accuracy for IPNs compared with the Mayo Clinic model alone with an area under the receiver operating characteristics curve of 0.80 (95% CI, 0.76-0.84) versus 0.72 (95% CI, 0.66-0.78). Use of this combination model correctly reclassified intermediate risk IPNs into low- or high-risk category (cNRI benign = 0.11 and cNRI malignant = 0.16).
The addition of cancer, fungal, and imaging biomarkers improves the diagnostic accuracy for IPNs. Integrating a combination biomarker approach into the diagnostic algorithm of IPNs might decrease unnecessary invasive testing of benign nodules and reduce time to diagnosis for cancer.
肺部不确定结节(IPN)在医疗保健中构成了重大的诊断负担。我们旨在比较一种组合临床预测模型(梅奥诊所模型)、真菌(组织胞浆菌血清学)、影像学(计算机断层扫描[CT]放射组学)和癌症(高敏细胞角蛋白 21 片段;hsCYFRA 21-1)生物标志物方法与已验证的肺癌预测模型在诊断肺癌方面的效果。
进行了一项前瞻性标本采集、回顾性盲法评估研究,纳入了 3 个独立队列的 6 至 30 毫米 IPN(n=281)患者。测量了血清组织胞浆菌 IgG 和 IgM 抗体以及 hsCYFRA 21-1 水平,并计算了已验证的 CT 放射组学评分。使用梅奥诊所模型变量、组织胞浆菌抗体水平、CT 放射组学评分和 hsCYFRA 21-1 对多变量逻辑回归模型进行了估计。比较了组合模型与梅奥诊所模型的诊断性能。使用校正后临床净重新分类指数(cNRI)来评估组合生物标志物方法的临床实用性。
共纳入 281 例患者(111 例来自组织胞浆菌流行地区)。与仅使用梅奥诊所模型相比,包括梅奥诊所模型评分、组织胞浆菌抗体水平、放射组学和 hsCYFRA 21-1 水平的组合生物标志物模型显示出对 IPN 的诊断准确性提高,其受试者工作特征曲线下面积为 0.80(95%置信区间,0.76-0.84),而梅奥诊所模型为 0.72(95%置信区间,0.66-0.78)。该组合模型正确地将中等风险的 IPN 重新分类为低风险或高风险类别(良性 cNRI=0.11,恶性 cNRI=0.16)。
癌症、真菌和影像学生物标志物的加入提高了 IPN 的诊断准确性。将组合生物标志物方法整合到 IPN 的诊断算法中可能会减少对良性结节的不必要的有创性检测,并缩短癌症的诊断时间。