Xiao David, Kammer Michael N, Chen Heidi, Woodhouse Palina, Sandler Kim L, Baron Anna E, Wilson David O, Billatos Ehab, Pu Jiantao, Maldonado Fabien, Deppen Stephen A, Grogan Eric L
Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Transl Lung Cancer Res. 2024 Aug 31;13(8):1907-1917. doi: 10.21037/tlcr-24-281. Epub 2024 Aug 26.
Radiomics has shown promise in improving malignancy risk stratification of indeterminate pulmonary nodules (IPNs) with many platforms available, but with no head-to-head comparisons. This study aimed to evaluate transportability of radiomic models across platforms by comparing performances of a commercial radiomic feature extractor (HealthMyne) with an open-source extractor (PyRadiomics) on diagnosis of lung cancer in IPNs.
A commercial radiomic feature extractor was used to segment IPNs from computed tomography (CT) scans, and a previously validated radiomic model based on commercial features was used as baseline (ComRad). Using same segmentation masks, PyRadiomics, an open-source feature extractor was used to build three open-source radiomic models (OpenRad) using different methods: open-source model derived using least absolute shrinkage and selection operator (LASSO) for feature selection, selecting open-source features matched to ComRad features based upon Imaging Biomarker Standardization Initiative (IBSI) nomenclature, and selecting open-source features most highly correlated to ComRad features. Radiomic models were trained on an internal cohort (n=161) and externally validated on 3 cohorts (n=278). We added Mayo clinical risk score to OpenRad and ComRad models, creating integrated clinical radiomic (ClinRad) models. All models were compared using area under the curve (AUC) and evaluated for clinical improvement using bias-corrected clinical net reclassification indices (cNRIs).
ComRad AUC was 0.76 [95% confidence interval (CI): 0.71-0.82], and OpenRad AUC was 0.75 (95% CI: 0.69-0.81) for LASSO model, 0.74 (95% CI: 0.68-0.79) for Spearman's correlation, and 0.71 (95% CI: 0.65-0.77) for IBSI. Mayo scores were added to OpenRad LASSO model, which performed best, forming open-source ClinRad model with AUC of 0.80 (95% CI: 0.74-0.86), identical to commercial ClinRad's AUC. Both ClinRad models showed clinical improvement compared to Mayo alone, with commercial ClinRad achieving cNRI of 0.09 (95% CI: 0.02-0.15) for benign and 0.07 (95% CI: 0.00-0.13) for malignant, and open-source ClinRad achieving cNRI of 0.09 (95% CI: 0.02-0.15) for benign and 0.06 (95% CI: 0.00-0.12) for malignant.
Transportability of radiomic models across platforms directly does not conserve performance, but radiomic platforms can provide equivalent results when building models allowing for flexibility in feature selection to maximize prediction accuracy.
放射组学在改善不确定肺结节(IPN)的恶性风险分层方面显示出前景,有许多可用平台,但尚无直接比较。本研究旨在通过比较商业放射组学特征提取器(HealthMyne)与开源提取器(PyRadiomics)对IPN中肺癌的诊断性能,评估放射组学模型在不同平台间的可转移性。
使用商业放射组学特征提取器从计算机断层扫描(CT)图像中分割出IPN,并将基于商业特征的先前验证的放射组学模型用作基线(ComRad)。使用相同的分割掩码,使用开源特征提取器PyRadiomics通过不同方法构建三个开源放射组学模型(OpenRad):使用最小绝对收缩和选择算子(LASSO)进行特征选择得出的开源模型,基于成像生物标志物标准化倡议(IBSI)命名法选择与ComRad特征匹配的开源特征,以及选择与ComRad特征相关性最高的开源特征。放射组学模型在内部队列(n = 161)上进行训练,并在3个队列(n = 278)上进行外部验证。我们将梅奥临床风险评分添加到OpenRad和ComRad模型中,创建综合临床放射组学(ClinRad)模型。使用曲线下面积(AUC)比较所有模型,并使用偏差校正临床净重新分类指数(cNRI)评估临床改善情况。
ComRad的AUC为0.76 [95%置信区间(CI):0.71 - 0.82],LASSO模型的OpenRad的AUC为0.75(95% CI:0.69 - 0.81),Spearman相关性的为0.74(95% CI:0.68 - 0.79),IBSI的为0.71(95% CI:0.65 - 0.77)。梅奥评分添加到表现最佳的OpenRad LASSO模型中,形成AUC为0.80(95% CI:0.74 - 0.86)的开源ClinRad模型,与商业ClinRad的AUC相同。与单独的梅奥评分相比,两个ClinRad模型均显示出临床改善,商业ClinRad的良性cNRI为0.09(95% CI:0.02 - 0.15),恶性为0.07(95% CI:0.00 - 0.13),开源ClinRad的良性cNRI为0.09(95% CI:0.02 - 0.15),恶性为0.06(95% CI:0.00 - 0.12)。
放射组学模型在不同平台间的直接可转移性并不能保持性能,但在构建模型时,放射组学平台可以提供等效结果,允许在特征选择上具有灵活性以最大化预测准确性。