Suppr超能文献

Thoracic Research Evaluation and Treatment 2.0 模型:用于专科评估的不确定结节患者的肺癌预测模型。

The Thoracic Research Evaluation and Treatment 2.0 Model: A Lung Cancer Prediction Model for Indeterminate Nodules Referred for Specialist Evaluation.

机构信息

Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN.

Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Division of Thoracic Surgery, Veterans Hospital, Tennessee Valley Healthcare System, Nashville, TN.

出版信息

Chest. 2023 Nov;164(5):1305-1314. doi: 10.1016/j.chest.2023.06.009. Epub 2023 Jun 17.

Abstract

BACKGROUND

Appropriate risk stratification of indeterminate pulmonary nodules (IPNs) is necessary to direct diagnostic evaluation. Currently available models were developed in populations with lower cancer prevalence than that seen in thoracic surgery and pulmonology clinics and usually do not allow for missing data. We updated and expanded the Thoracic Research Evaluation and Treatment (TREAT) model into a more generalized, robust approach for lung cancer prediction in patients referred for specialty evaluation.

RESEARCH QUESTION

Can clinic-level differences in nodule evaluation be incorporated to improve lung cancer prediction accuracy in patients seeking immediate specialty evaluation compared with currently available models?

STUDY DESIGN AND METHODS

Clinical and radiographic data on patients with IPNs from six sites (N = 1,401) were collected retrospectively and divided into groups by clinical setting: pulmonary nodule clinic (n = 374; cancer prevalence, 42%), outpatient thoracic surgery clinic (n = 553; cancer prevalence, 73%), or inpatient surgical resection (n = 474; cancer prevalence, 90%). A new prediction model was developed using a missing data-driven pattern submodel approach. Discrimination and calibration were estimated with cross-validation and were compared with the original TREAT, Mayo Clinic, Herder, and Brock models. Reclassification was assessed with bias-corrected clinical net reclassification index and reclassification plots.

RESULTS

Two-thirds of patients had missing data; nodule growth and fluorodeoxyglucose-PET scan avidity were missing most frequently. The TREAT version 2.0 mean area under the receiver operating characteristic curve across missingness patterns was 0.85 compared with that of the original TREAT (0.80), Herder (0.73), Mayo Clinic (0.72), and Brock (0.68) models with improved calibration. The bias-corrected clinical net reclassification index was 0.23.

INTERPRETATION

The TREAT 2.0 model is more accurate and better calibrated for predicting lung cancer in high-risk IPNs than the Mayo, Herder, or Brock models. Nodule calculators such as TREAT 2.0 that account for varied lung cancer prevalence and that consider missing data may provide more accurate risk stratification for patients seeking evaluation at specialty nodule evaluation clinics.

摘要

背景

对不确定的肺结节 (IPN) 进行适当的风险分层对于指导诊断评估是必要的。目前可用的模型是在癌症发病率低于胸外科和肺病学诊所的人群中开发的,通常不允许存在缺失数据。我们对 Thoracic Research Evaluation and Treatment (TREAT) 模型进行了更新和扩展,使其成为一种更通用、更强大的方法,用于预测在专科评估中就诊的患者的肺癌。

研究问题

能否将结节评估方面的诊所差异纳入其中,以提高与当前可用模型相比,在寻求立即专科评估的患者中预测肺癌的准确性?

研究设计和方法

回顾性收集了来自六个地点 (N = 1,401) 的 IPN 患者的临床和影像学数据,并根据临床环境将患者分为以下几组:肺结节诊所 (n = 374;癌症患病率为 42%)、门诊胸外科诊所 (n = 553;癌症患病率为 73%)或住院手术切除 (n = 474;癌症患病率为 90%)。使用缺失数据驱动的模式子模型方法开发了一个新的预测模型。使用交叉验证估计判别和校准,并与原始 TREAT、Mayo 诊所、Herder 和 Brock 模型进行比较。使用偏倚校正的临床净重新分类指数和重新分类图评估重新分类。

结果

三分之二的患者存在缺失数据;结节生长和氟脱氧葡萄糖-PET 扫描摄取最常缺失。在各种缺失模式下,TREAT 版本 2.0 的平均接收者操作特征曲线下面积为 0.85,高于原始 TREAT (0.80)、Herder (0.73)、Mayo 诊所 (0.72)和 Brock (0.68)模型,校准得到改善。偏倚校正的临床净重新分类指数为 0.23。

解释

TREAT 2.0 模型在预测高危 IPN 中的肺癌方面比 Mayo、Herder 或 Brock 模型更准确和校准更好。像 TREAT 2.0 这样的结节计算器可以考虑不同的肺癌发病率,并考虑缺失数据,这可能为在专科结节评估诊所就诊的患者提供更准确的风险分层。

相似文献

2
Risk of malignancy in pulmonary nodules: A validation study of four prediction models.
Lung Cancer. 2015 Jul;89(1):27-30. doi: 10.1016/j.lungcan.2015.03.018. Epub 2015 Mar 28.
8
Improving lung cancer diagnosis with cancer, fungal, and imaging biomarkers.
J Thorac Cardiovasc Surg. 2023 Sep;166(3):669-678.e4. doi: 10.1016/j.jtcvs.2022.12.014. Epub 2022 Dec 23.
10
Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography.
JAMA Netw Open. 2020 Feb 5;3(2):e1921221. doi: 10.1001/jamanetworkopen.2019.21221.

引用本文的文献

2
Validation of a High-Specificity Blood Autoantibody Test to Detect Lung Cancer in Pulmonary Nodules.
CHEST Pulm. 2025 Mar;3(1). doi: 10.1016/j.chpulm.2024.100130. Epub 2024 Dec 25.
3
Advancing NSCLC pathological subtype prediction with interpretable machine learning: a comprehensive radiomics-based approach.
Front Med (Lausanne). 2024 May 22;11:1413990. doi: 10.3389/fmed.2024.1413990. eCollection 2024.

本文引用的文献

2
Improving malignancy risk prediction of indeterminate pulmonary nodules with imaging features and biomarkers.
Clin Chim Acta. 2022 Sep 1;534:106-114. doi: 10.1016/j.cca.2022.07.010. Epub 2022 Jul 20.
3
Integrated Biomarkers for the Management of Indeterminate Pulmonary Nodules.
Am J Respir Crit Care Med. 2021 Dec 1;204(11):1306-1316. doi: 10.1164/rccm.202012-4438OC.
4
Detection and characterization of lung cancer using cell-free DNA fragmentomes.
Nat Commun. 2021 Aug 20;12(1):5060. doi: 10.1038/s41467-021-24994-w.
6
US task force recommends extending lung cancer screenings to over 50s.
BMJ. 2021 Mar 11;372:n698. doi: 10.1136/bmj.n698.
7
Noninvasive biomarkers for lung cancer diagnosis, where do we stand?
J Thorac Dis. 2020 Jun;12(6):3317-3330. doi: 10.21037/jtd-2019-ndt-10.
8
Missing data and prediction: the pattern submodel.
Biostatistics. 2020 Apr 1;21(2):236-252. doi: 10.1093/biostatistics/kxy040.
9
Surveillance for Cancer Incidence and Mortality - United States, 2013.
MMWR Surveill Summ. 2017 Jan 27;66(4):1-36. doi: 10.15585/mmwr.ss6604a1.
10
Current Cigarette Smoking Among Adults - United States, 2005-2015.
MMWR Morb Mortal Wkly Rep. 2016 Nov 11;65(44):1205-1211. doi: 10.15585/mmwr.mm6544a2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验