Suppr超能文献

利用影像学特征和生物标志物提高肺内不定性结节恶性风险预测能力。

Improving malignancy risk prediction of indeterminate pulmonary nodules with imaging features and biomarkers.

机构信息

Department of Thoracic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA.

Abbott Diagnostics Division, 100 Abbott Park Road, Abbott Park, IL 60064, USA.

出版信息

Clin Chim Acta. 2022 Sep 1;534:106-114. doi: 10.1016/j.cca.2022.07.010. Epub 2022 Jul 20.

Abstract

BACKGROUND

Non-invasive biomarkers are needed to improve management of indeterminate pulmonary nodules (IPNs) suspicious for lung cancer.

METHODS

Protein biomarkers were quantified in serum samples from patients with 6-30 mm IPNs (n = 338). A previously derived and validated radiomic score based upon nodule shape, size, and texture was calculated from features derived from CT scans. Lung cancer prediction models incorporating biomarkers, radiomics, and clinical factors were developed. Diagnostic performance was compared to the current standard of risk estimation (Mayo). IPN risk reclassification was determined using bias-corrected clinical net reclassification index.

RESULTS

Age, radiomic score, CYFRA 21-1, and CEA were identified as the strongest predictors of cancer. These models provided greater diagnostic accuracy compared to Mayo with AUCs of 0.76 (95 % CI 0.70-0.81) using logistic regression and 0.73 (0.67-0.79) using random forest methods. Random forest and logistic regression models demonstrated improved risk reclassification with median cNRI of 0.21 (Q1 0.20, Q3 0.23) and 0.21 (0.19, 0.23) compared to Mayo for malignancy.

CONCLUSIONS

A combined biomarker, radiomic, and clinical risk factor model provided greater diagnostic accuracy of IPNs than Mayo. This model demonstrated a strong ability to reclassify malignant IPNs. Integrating a combined approach into the current diagnostic algorithm for IPNs could improve nodule management.

摘要

背景

需要非侵入性生物标志物来改善疑似肺癌的肺结节(IPN)的管理。

方法

在 6-30mm IPN 患者的血清样本中定量测定了蛋白质生物标志物(n=338)。从 CT 扫描中提取的特征计算了先前推导和验证的基于结节形状、大小和纹理的放射组学评分。开发了包含生物标志物、放射组学和临床因素的肺癌预测模型。使用偏倚校正的临床净重新分类指数比较了诊断性能与当前的风险评估标准(Mayo)。

结果

年龄、放射组学评分、CYFRA 21-1 和 CEA 被确定为癌症的最强预测因子。与 Mayo 相比,这些模型的诊断准确性更高,逻辑回归的 AUC 为 0.76(95%CI 0.70-0.81),随机森林方法的 AUC 为 0.73(0.67-0.79)。随机森林和逻辑回归模型在恶性肿瘤方面,中位数 cNRI 分别为 0.21(Q1 0.20,Q3 0.23)和 0.21(0.19,0.23),与 Mayo 相比,风险重新分类得到改善。

结论

一种联合生物标志物、放射组学和临床危险因素模型提高了 IPN 的诊断准确性,优于 Mayo。该模型对恶性 IPN 具有很强的重新分类能力。将综合方法纳入当前的 IPN 诊断算法中可以改善结节管理。

相似文献

2
Improving lung cancer diagnosis with cancer, fungal, and imaging biomarkers.利用癌症、真菌和影像学生物标志物提高肺癌诊断水平。
J Thorac Cardiovasc Surg. 2023 Sep;166(3):669-678.e4. doi: 10.1016/j.jtcvs.2022.12.014. Epub 2022 Dec 23.

引用本文的文献

8

本文引用的文献

3
The 2021 USPSTF lung cancer screening guidelines: a new frontier.2021年美国预防服务工作组肺癌筛查指南:一个新领域。
Lancet Respir Med. 2021 Jul;9(7):689-691. doi: 10.1016/S2213-2600(21)00210-1. Epub 2021 May 6.
8
Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial.随机试验中 CT 容积筛查降低肺癌死亡率
N Engl J Med. 2020 Feb 6;382(6):503-513. doi: 10.1056/NEJMoa1911793. Epub 2020 Jan 29.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验