Suppr超能文献

基于基因的标记物可提高水稻育种全基因组关联研究的精度和基因组预测的准确性。

Gene based markers improve precision of genome-wide association studies and accuracy of genomic predictions in rice breeding.

机构信息

ICAR-National Rice Research Institute, Cuttack, 753006, India.

University of Agricultural Sciences, Bangalore, 560065, India.

出版信息

Heredity (Edinb). 2023 May;130(5):335-345. doi: 10.1038/s41437-023-00599-5. Epub 2023 Feb 15.

Abstract

It is hypothesized that the genome-wide genic markers may increase the prediction accuracy of genomic selection for quantitative traits. To test this hypothesis, a set of candidate gene-based markers for yield and grain traits-related genes cloned across the rice genome were custom-designed. A multi-model, multi-locus genome-wide association study (GWAS) was performed using new genic markers developed to test their effectiveness for gene discovery. Two multi-locus models, FarmCPU and mrMLM, along with a single-locus mixed linear model (MLM), identified 28 significant marker-trait associations. These associations revealed novel causative alleles for grain weight and pleiotropic associations with other traits. For instance, the marker YD91 derived from the gene OsAAP3 on chromosome 1 was consistently associated with grain weight, while the gene has a significant effect on grain yield. Furthermore, nine genomic selection methods, including regression-based and machine learning-based models, were used to predict grain weight using a leave-one-out five-fold cross-validation approach to optimize the genomic selection model with genic markers. Among nine prediction models, Kernel Hilbert Space Regression (RKHS) is the best among regression-based models, and Random Forest Regression (RFR) is the best among machine learning-based models. Genomic prediction accuracies with and without GWAS significant markers were compared to assess the effectiveness of markers. The rapid decreases in prediction accuracy upon dropping GWAS significant markers indicate the effectiveness of new genic markers in genomic selection. Apart from that, the candidate gene-based markers were found to be more effective in genomic selection programs for better accuracy.

摘要

人们假设全基因组基因标记可以提高数量性状基因组选择的预测准确性。为了验证这一假设,针对克隆在水稻基因组中的与产量和粒形性状相关的基因,设计了一套候选基因标记。利用新开发的基因标记进行了多模型、多基因座全基因组关联研究(GWAS),以测试其在基因发现方面的有效性。两种多基因座模型FarmCPU 和 mrMLM 以及一种单基因座混合线性模型(MLM),共鉴定出 28 个与标记-性状显著相关的关联。这些关联揭示了与粒重相关的新的因果等位基因和与其他性状的多效性关联。例如,标记 YD91 来源于第 1 号染色体上的基因 OsAAP3,它与粒重一直显著相关,而该基因对粒产量有显著影响。此外,使用了 9 种基因组选择方法,包括基于回归和基于机器学习的模型,使用留一五折交叉验证方法,通过基因标记优化基因组选择模型,预测粒重。在 9 种预测模型中,基于核希尔伯特空间回归(RKHS)的模型在基于回归的模型中表现最好,而基于随机森林回归(RFR)的模型在基于机器学习的模型中表现最好。比较了有和没有 GWAS 显著标记的基因组预测准确性,以评估标记的有效性。在去除 GWAS 显著标记后,预测准确性迅速下降,这表明新基因标记在基因组选择中是有效的。此外,候选基因标记在基因组选择计划中被发现更有效,可以提高准确性。

相似文献

1
Gene based markers improve precision of genome-wide association studies and accuracy of genomic predictions in rice breeding.
Heredity (Edinb). 2023 May;130(5):335-345. doi: 10.1038/s41437-023-00599-5. Epub 2023 Feb 15.
3
4
Genomic Prediction for Grain Yield and Yield-Related Traits in Chinese Winter Wheat.
Int J Mol Sci. 2020 Feb 17;21(4):1342. doi: 10.3390/ijms21041342.
7
Genetic Dissection of Grain Yield of Maize and Yield-Related Traits Through Association Mapping and Genomic Prediction.
Front Plant Sci. 2021 Jul 15;12:690059. doi: 10.3389/fpls.2021.690059. eCollection 2021.
10
Genome wide association mapping for grain shape traits in indica rice.
Planta. 2016 Oct;244(4):819-30. doi: 10.1007/s00425-016-2548-9. Epub 2016 May 19.

引用本文的文献

5
SPDC-HG: An accelerator of genomic hybrid breeding in maize.
Plant Biotechnol J. 2025 May;23(5):1847-1861. doi: 10.1111/pbi.70011. Epub 2025 Feb 27.
8
Big data and artificial intelligence-aided crop breeding: Progress and prospects.
J Integr Plant Biol. 2025 Mar;67(3):722-739. doi: 10.1111/jipb.13791. Epub 2024 Oct 28.
9
Genetic dissection of green pod yield in dolichos bean, an orphan vegetable legume, using new molecular markers.
J Appl Genet. 2024 Sep;65(3):429-438. doi: 10.1007/s13353-024-00865-0. Epub 2024 Apr 8.
10

本文引用的文献

1
Genome-wide association study and genomic prediction for yield and grain quality traits of hybrid rice.
Mol Breed. 2022 Mar 18;42(4):16. doi: 10.1007/s11032-022-01289-6. eCollection 2022 Apr.
2
Advances in integrated genomic selection for rapid genetic gain in crop improvement: a review.
Planta. 2022 Sep 23;256(5):87. doi: 10.1007/s00425-022-03996-y.
4
Unravelling genetic architecture and development of core set from elite rice lines using yield-related candidate gene markers.
Physiol Mol Biol Plants. 2022 Jun;28(6):1217-1232. doi: 10.1007/s12298-022-01190-8. Epub 2022 Jul 8.
5
IIIVmrMLM: The R and C++ tools associated with 3VmrMLM, a comprehensive GWAS method for dissecting quantitative traits.
Mol Plant. 2022 Aug 1;15(8):1251-1253. doi: 10.1016/j.molp.2022.06.002. Epub 2022 Jun 8.
8
Genetic and Molecular Factors Determining Grain Weight in Rice.
Front Plant Sci. 2021 Jul 12;12:605799. doi: 10.3389/fpls.2021.605799. eCollection 2021.
9
Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation.
Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296. doi: 10.1093/nar/gkab301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验