Suppr超能文献

通过弯曲统计流形中的高阶相互作用实现的爆炸式神经网络。

Explosive neural networks via higher-order interactions in curved statistical manifolds.

作者信息

Aguilera Miguel, Morales Pablo A, Rosas Fernando E, Shimazaki Hideaki

机构信息

BCAM - Basque Center for Applied Mathematics, Bilbao, Spain.

IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.

出版信息

Nat Commun. 2025 Jul 24;16(1):6511. doi: 10.1038/s41467-025-61475-w.

Abstract

Higher-order interactions underlie complex phenomena in systems such as biological and artificial neural networks, but their study is challenging due to the scarcity of tractable models. By leveraging a generalisation of the maximum entropy principle, we introduce curved neural networks as a class of models with a limited number of parameters that are particularly well-suited for studying higher-order phenomena. Through exact mean-field descriptions, we show that these curved neural networks implement a self-regulating annealing process that can accelerate memory retrieval, leading to explosive order-disorder phase transitions with multi-stability and hysteresis effects. Moreover, by analytically exploring their memory-retrieval capacity using the replica trick, we demonstrate that these networks can enhance memory capacity and robustness of retrieval over classical associative-memory networks. Overall, the proposed framework provides parsimonious models amenable to analytical study, revealing higher-order phenomena in complex networks.

摘要

高阶相互作用是生物和人工神经网络等系统中复杂现象的基础,但由于缺乏易于处理的模型,对其进行研究具有挑战性。通过利用最大熵原理的推广,我们引入了曲线神经网络作为一类参数数量有限的模型,特别适合研究高阶现象。通过精确的平均场描述,我们表明这些曲线神经网络实现了一个自调节退火过程,该过程可以加速记忆检索,导致具有多稳定性和滞后效应的爆发性有序-无序相变。此外,通过使用复制技巧分析性地探索它们的记忆检索能力,我们证明这些网络可以提高记忆容量和检索的鲁棒性,优于经典的联想记忆网络。总体而言,所提出的框架提供了适合进行分析研究的简约模型,揭示了复杂网络中的高阶现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d75e/12290047/245ff9044c4b/41467_2025_61475_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验