Arshad Rizwan, Zander Thomas, Bashkuev Maxim, Schmidt Hendrik
Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
Med Eng Phys. 2017 Aug;46:54-62. doi: 10.1016/j.medengphy.2017.05.006. Epub 2017 Jun 27.
Inverse dynamic musculoskeletal human body models are commonly used to predict the spinal loads and trunk muscle forces. These models include rigid body segments, mechanical joints, active and passive structural components such as muscles, tendons and ligaments. Several studies used simple definition of lumbar spinal discs idealized as spherical joints with infinite translational stiffness. The aim of the current sensitivity study was to investigate the influence of disc translational stiffness (shear and compressive stiffness) on the joint kinematics and forces in intervertebral discs (L1-L5), trunk muscles and ligaments for an intermediately flexed position (55°). Based on in vitro data, a range of disc shear stiffness (100-200N/mm) and compressive stiffness (1900-2700N/mm) was considered in the model using the technique of force dependent kinematics (FDK). Range of variation in spinal loads, trunk muscle forces and ligaments forces were calculated (with & without load in hands) and compared with the results of reference model (RM) having infinite translational stiffness. The discs' centers of rotation (CoR) were computed for L3-L4 and L4-L5 motion segments. Between RM and FDK models, maximum differences in compressive forces were 7% (L1-L2 & L2-L3), 8% (L3-L4) and 6% (L4-L5) whereas in shear forces 35% (L1-L2), 47% (L2-L3), 45% (L3-L4) and more than 100% in L4-L5. Maximum differences in the sum of global and local muscle forces were approximately 10%, whereas in ligament forces were 27% (supraspinous), 40% (interspinous), 56% (intertransverse), 58% (lig. flavum) and 100% (lig. posterior). The CoRs were predicted posteriorly, below (L3-L4) and in the disc (L4-L5). FDK model predicted lower spinal loads, ligament forces and varied distribution of global and local muscle forces. Consideration of translational stiffnesses influenced the model results and showed increased differences with lower stiffness values.
逆动力学肌肉骨骼人体模型通常用于预测脊柱负荷和躯干肌肉力量。这些模型包括刚体节段、机械关节以及肌肉、肌腱和韧带等主动和被动结构组件。多项研究使用了将腰椎间盘简单定义为具有无限平移刚度的球形关节的方法。当前敏感性研究的目的是调查椎间盘平移刚度(剪切和压缩刚度)对处于中度屈曲位置(55°)时椎间盘(L1-L5)、躯干肌肉和韧带的关节运动学及力的影响。基于体外数据,使用力相关运动学(FDK)技术在模型中考虑了一系列椎间盘剪切刚度(100-200N/mm)和压缩刚度(1900-2700N/mm)。计算了脊柱负荷、躯干肌肉力量和韧带力量的变化范围(手中有负荷和无负荷时),并与具有无限平移刚度的参考模型(RM)的结果进行比较。计算了L3-L4和L4-L5运动节段椎间盘的旋转中心(CoR)。在RM模型和FDK模型之间,压缩力的最大差异分别为7%(L1-L2和L2-L3)、8%(L3-L4)和6%(L4-L5),而剪切力的最大差异分别为35%(L1-L2)、47%(L2-L3)、45%(L3-L4),L4-L5中超过100%。全局和局部肌肉力量总和的最大差异约为10%,而韧带力量的最大差异分别为27%(棘上韧带)、40%(棘间韧带)、56%(横突间韧带)、58%(黄韧带)和100%(后纵韧带)。CoR预测位于后方,在L3-L4下方以及L4-L5椎间盘内。FDK模型预测的脊柱负荷和韧带力量较低,全局和局部肌肉力量分布不同。考虑平移刚度会影响模型结果,并且随着刚度值降低差异增大。