Suppr超能文献

多模态数据分析的综合因子回归及其推断

Integrative Factor Regression and Its Inference for Multimodal Data Analysis.

作者信息

Li Quefeng, Li Lexin

机构信息

University of North Carolina, Chapel Hill and University of California, Berkeley.

出版信息

J Am Stat Assoc. 2022;117(540):2207-2221. doi: 10.1080/01621459.2021.1914635. Epub 2021 May 20.

Abstract

Multimodal data, where different types of data are collected from the same subjects, are fast emerging in a large variety of scientific applications. Factor analysis is commonly used in integrative analysis of multimodal data, and is particularly useful to overcome the curse of high dimensionality and high correlations. However, there is little work on statistical inference for factor analysis based supervised modeling of multimodal data. In this article, we consider an integrative linear regression model that is built upon the latent factors extracted from multimodal data. We address three important questions: how to infer the significance of one data modality given the other modalities in the model; how to infer the significance of a combination of variables from one modality or across different modalities; and how to quantify the contribution, measured by the goodness-of-fit, of one data modality given the others. When answering each question, we explicitly characterize both the benefit and the extra cost of factor analysis. Those questions, to our knowledge, have not yet been addressed despite wide use of factor analysis in integrative multimodal analysis, and our proposal bridges an important gap. We study the empirical performance of our methods through simulations, and further illustrate with a multimodal neuroimaging analysis.

摘要

多模态数据是指从同一受试者收集的不同类型的数据,在各种各样的科学应用中迅速兴起。因子分析常用于多模态数据的综合分析,尤其有助于克服高维度和高相关性的问题。然而,基于多模态数据的因子分析监督建模的统计推断方面的工作却很少。在本文中,我们考虑一个基于从多模态数据中提取的潜在因子构建的综合线性回归模型。我们解决三个重要问题:在模型中给定其他模态的情况下,如何推断一种数据模态的显著性;如何推断来自一种模态或跨不同模态的变量组合的显著性;以及如何在给定其他数据模态的情况下,量化一种数据模态以拟合优度衡量的贡献。在回答每个问题时,我们明确刻画了因子分析的益处和额外成本。据我们所知,尽管因子分析在综合多模态分析中被广泛使用,但这些问题尚未得到解决,我们的提议填补了一个重要空白。我们通过模拟研究了我们方法的实证性能,并通过多模态神经影像分析进一步进行了说明。

相似文献

1
Integrative Factor Regression and Its Inference for Multimodal Data Analysis.多模态数据分析的综合因子回归及其推断
J Am Stat Assoc. 2022;117(540):2207-2221. doi: 10.1080/01621459.2021.1914635. Epub 2021 May 20.
2
Simultaneous Covariance Inference for Multimodal Integrative Analysis.用于多模态整合分析的同步协方差推断
J Am Stat Assoc. 2020;115(531):1279-1291. doi: 10.1080/01621459.2019.1623040. Epub 2019 Jun 28.
3
Multimodal neuroimaging data integration and pathway analysis.多模态神经影像学数据整合与通路分析。
Biometrics. 2021 Sep;77(3):879-889. doi: 10.1111/biom.13351. Epub 2020 Aug 20.
4
Generalized Liquid Association Analysis for Multimodal Data Integration.用于多模态数据集成的广义液体关联分析
J Am Stat Assoc. 2023;118(543):1984-1996. doi: 10.1080/01621459.2021.2024437. Epub 2022 Mar 31.
5
Orthogonalized Kernel Debiased Machine Learning for Multimodal Data Analysis.用于多模态数据分析的正交化核去偏机器学习
J Am Stat Assoc. 2023;118(543):1796-1810. doi: 10.1080/01621459.2021.2013851. Epub 2022 Feb 3.
8
Statistical Inferences for Complex Dependence of Multimodal Imaging Data.多模态成像数据复杂依赖性的统计推断
J Am Stat Assoc. 2024;119(546):1486-1499. doi: 10.1080/01621459.2023.2200610. Epub 2023 May 26.

引用本文的文献

2
Joint and Individual Component Regression.联合与个体成分回归
J Comput Graph Stat. 2024;33(3):763-773. doi: 10.1080/10618600.2023.2284227. Epub 2023 Dec 29.
3
Are Latent Factor Regression and Sparse Regression Adequate?潜在因子回归和稀疏回归是否足够?
J Am Stat Assoc. 2024;119(546):1076-1088. doi: 10.1080/01621459.2023.2169700. Epub 2023 Feb 14.
4
Orthogonalized Kernel Debiased Machine Learning for Multimodal Data Analysis.用于多模态数据分析的正交化核去偏机器学习
J Am Stat Assoc. 2023;118(543):1796-1810. doi: 10.1080/01621459.2021.2013851. Epub 2022 Feb 3.

本文引用的文献

2
Factor-Adjusted Regularized Model Selection.因子调整正则化模型选择
J Econom. 2020 May;216(1):71-85. doi: 10.1016/j.jeconom.2020.01.006. Epub 2020 Feb 7.
4
Structural learning and integrative decomposition of multi-view data.多视图数据的结构学习与整合分解
Biometrics. 2019 Dec;75(4):1121-1132. doi: 10.1111/biom.13108. Epub 2019 Sep 15.
6
Embracing the Blessing of Dimensionality in Factor Models.拥抱因子模型中维度的福祉。
J Am Stat Assoc. 2018;113(521):380-389. doi: 10.1080/01621459.2016.1256815. Epub 2017 Nov 13.
7
Supervised multiway factorization.监督式多路分解
Electron J Stat. 2018;12(1):1150-1180. doi: 10.1214/18-EJS1421. Epub 2018 Mar 27.
10
Statistical Methods in Integrative Genomics.整合基因组学中的统计方法
Annu Rev Stat Appl. 2016 Jun;3:181-209. doi: 10.1146/annurev-statistics-041715-033506. Epub 2016 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验