Suppr超能文献

多模态成像数据复杂依赖性的统计推断

Statistical Inferences for Complex Dependence of Multimodal Imaging Data.

作者信息

Chang Jinyuan, He Jing, Kang Jian, Wu Mingcong

机构信息

Joint Laboratory of Data Science and Business Intelligence, Southwestern University of Finance and Economics, Chengdu, China.

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.

出版信息

J Am Stat Assoc. 2024;119(546):1486-1499. doi: 10.1080/01621459.2023.2200610. Epub 2023 May 26.

Abstract

Statistical analysis of multimodal imaging data is a challenging task, since the data involves high-dimensionality, strong spatial correlations and complex data structures. In this paper, we propose rigorous statistical testing procedures for making inferences on the complex dependence of multimodal imaging data. Motivated by the analysis of multitask fMRI data in the Human Connectome Project (HCP) study, we particularly address three hypothesis testing problems: (a) testing independence among imaging modalities over brain regions, (b) testing independence between brain regions within imaging modalities, and (c) testing independence between brain regions across different modalities. Considering a general form for all the three tests, we develop a global testing procedure and a multiple testing procedure controlling the false discovery rate. We study theoretical properties of the proposed tests and develop a computationally efficient distributed algorithm. The proposed methods and theory are general and relevant for many statistical problems of testing independence structure among the components of high-dimensional random vectors with arbitrary dependence structures. We also illustrate our proposed methods via extensive simulations and analysis of five task fMRI contrast maps in the HCP study.

摘要

多模态成像数据的统计分析是一项具有挑战性的任务,因为数据涉及高维度、强空间相关性和复杂的数据结构。在本文中,我们提出了严格的统计检验程序,用于对多模态成像数据的复杂依赖性进行推断。受人类连接组计划(HCP)研究中多任务功能磁共振成像(fMRI)数据分析的启发,我们特别解决了三个假设检验问题:(a)检验大脑区域上成像模态之间的独立性,(b)检验成像模态内大脑区域之间的独立性,以及(c)检验不同模态下大脑区域之间的独立性。考虑到所有这三个检验的一般形式,我们开发了一种全局检验程序和一种控制错误发现率的多重检验程序。我们研究了所提出检验的理论性质,并开发了一种计算效率高的分布式算法。所提出的方法和理论具有一般性,适用于许多检验具有任意依赖结构的高维随机向量各分量之间独立性结构的统计问题。我们还通过广泛的模拟以及对HCP研究中五个任务fMRI对比图的分析来说明我们提出的方法。

相似文献

1
Statistical Inferences for Complex Dependence of Multimodal Imaging Data.
J Am Stat Assoc. 2024;119(546):1486-1499. doi: 10.1080/01621459.2023.2200610. Epub 2023 May 26.
2
Inference for nonparanormal partial correlation via regularized rank-based nodewise regression.
Biometrics. 2023 Jun;79(2):1173-1186. doi: 10.1111/biom.13624. Epub 2022 Mar 25.
3
Sequential Pathway Inference for Multimodal Neuroimaging Analysis.
Stat. 2022 Dec;11(1). doi: 10.1002/sta4.433. Epub 2021 Oct 15.
4
Dependence and independence: Structure and inference.
Stat Methods Med Res. 2017 Oct;26(5):2114-2132. doi: 10.1177/0962280215594198. Epub 2015 Jul 29.
5
Mediation Analysis for High-Dimensional Mediators and Outcomes with an Application to Multimodal Imaging Data.
Comput Stat Data Anal. 2023 Sep;185. doi: 10.1016/j.csda.2023.107765. Epub 2023 Apr 24.
6
Sources of residual autocorrelation in multiband task fMRI and strategies for effective mitigation.
Front Neurosci. 2023 Jan 4;16:1051424. doi: 10.3389/fnins.2022.1051424. eCollection 2022.
7
Multitask fMRI Data Classification via Group-Wise Hybrid Temporal and Spatial Sparse Representations.
eNeuro. 2022 Jun 6;9(3). doi: 10.1523/ENEURO.0478-21.2022. Print 2022 May-Jun.
8
Statistical testing and power analysis for brain-wide association study.
Med Image Anal. 2018 Jul;47:15-30. doi: 10.1016/j.media.2018.03.014. Epub 2018 Apr 5.
9
Multi-scale Fisher's independence test for multivariate dependence.
Biometrika. 2022 Sep;109(3):569-587. doi: 10.1093/biomet/asac013. Epub 2022 Feb 21.
10
Estimating False Discovery Proportion Under Arbitrary Covariance Dependence.
J Am Stat Assoc. 2012;107(499):1019-1035. doi: 10.1080/01621459.2012.720478.

本文引用的文献

1
ASYMPTOTIC DISTRIBUTIONS OF HIGH-DIMENSIONAL DISTANCE CORRELATION INFERENCE.
Ann Stat. 2021 Aug;49(4):1999-2020. doi: 10.1214/20-aos2024. Epub 2021 Sep 29.
2
Simultaneous Covariance Inference for Multimodal Integrative Analysis.
J Am Stat Assoc. 2020;115(531):1279-1291. doi: 10.1080/01621459.2019.1623040. Epub 2019 Jun 28.
3
ARE DISCOVERIES SPURIOUS? DISTRIBUTIONS OF MAXIMUM SPURIOUS CORRELATIONS AND THEIR APPLICATIONS.
Ann Stat. 2018 Jun;46(3):989-1017. doi: 10.1214/17-AOS1575. Epub 2018 May 3.
4
Projection correlation between two random vectors.
Biometrika. 2017 Dec;104(4):829-843. doi: 10.1093/biomet/asx043. Epub 2017 Sep 4.
5
Distribution-free tests of independence in high dimensions.
Biometrika. 2017 Dec;104(4):813-828. doi: 10.1093/biomet/asx050. Epub 2017 Oct 3.
6
Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity.
Biometrics. 2017 Dec;73(4):1300-1310. doi: 10.1111/biom.12695. Epub 2017 Mar 31.
7
Frontal Structural Neural Correlates of Working Memory Performance in Older Adults.
Front Aging Neurosci. 2017 Jan 4;8:328. doi: 10.3389/fnagi.2016.00328. eCollection 2016.
8
Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders.
Brain Inform. 2015 Sep;2(3):167-180. doi: 10.1007/s40708-015-0019-x. Epub 2015 Aug 29.
9
The brain's default mode network.
Annu Rev Neurosci. 2015 Jul 8;38:433-47. doi: 10.1146/annurev-neuro-071013-014030. Epub 2015 May 4.
10
Joint sparse representation of brain activity patterns in multi-task fMRI data.
IEEE Trans Med Imaging. 2015 Jan;34(1):2-12. doi: 10.1109/TMI.2014.2340816. Epub 2014 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验