Suppr超能文献

监督式多路分解

Supervised multiway factorization.

作者信息

Lock Eric F, Li Gen

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455.

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032.

出版信息

Electron J Stat. 2018;12(1):1150-1180. doi: 10.1214/18-EJS1421. Epub 2018 Mar 27.

Abstract

We describe a probabilistic PARAFAC/CANDECOMP (CP) factorization for multiway (i.e., tensor) data that incorporates auxiliary covariates, . SupCP generalizes the supervised singular value decomposition (SupSVD) for vector-valued observations, to allow for observations that have the form of a matrix or higher-order array. Such data are increasingly encountered in biomedical research and other fields. We use a novel likelihood-based latent variable representation of the CP factorization, in which the latent variables are informed by additional covariates. We give conditions for identifiability, and develop an EM algorithm for simultaneous estimation of all model parameters. SupCP can be used for dimension reduction, capturing latent structures that are more accurate and interpretable due to covariate supervision. Moreover, SupCP specifies a full probability distribution for a multiway data observation with given covariate values, which can be used for predictive modeling. We conduct comprehensive simulations to evaluate the SupCP algorithm. We apply it to a facial image database with facial descriptors (e.g., smiling / not smiling) as covariates, and to a study of amino acid fluorescence. Software is available at https://github.com/lockEF/SupCP.

摘要

我们描述了一种用于多路(即张量)数据的概率平行因子分析/同时对角化分解(CP)因式分解方法,该方法纳入了辅助协变量。SupCP将用于向量值观测的监督奇异值分解(SupSVD)进行了推广,以适用于具有矩阵或更高阶数组形式的观测。此类数据在生物医学研究和其他领域中越来越常见。我们使用一种基于新颖似然的CP因式分解潜在变量表示,其中潜在变量由额外的协变量提供信息。我们给出了可识别性条件,并开发了一种用于同时估计所有模型参数的期望最大化(EM)算法。SupCP可用于降维,捕捉由于协变量监督而更准确且可解释的潜在结构。此外,SupCP为具有给定协变量值的多路数据观测指定了一个完整的概率分布,可用于预测建模。我们进行了全面的模拟以评估SupCP算法。我们将其应用于一个面部图像数据库,其中面部描述符(例如,微笑/不微笑)作为协变量,以及一项氨基酸荧光研究。软件可在https://github.com/lockEF/SupCP获取。

相似文献

1
Supervised multiway factorization.监督式多路分解
Electron J Stat. 2018;12(1):1150-1180. doi: 10.1214/18-EJS1421. Epub 2018 Mar 27.
2
Tensor-on-tensor regression.张量对张量回归
J Comput Graph Stat. 2018;27(3):638-647. doi: 10.1080/10618600.2017.1401544. Epub 2018 Jun 6.
4
Bayesian Nonparametric Models for Multiway Data Analysis.贝叶斯非参数模型在多向数据分析中的应用。
IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):475-87. doi: 10.1109/TPAMI.2013.201.
5
CP Tensor Decomposition with Cannot-Link Intermode Constraints.具有不可链接模式间约束的CP张量分解
Proc SIAM Int Conf Data Min. 2019 May;2019:711-719. doi: 10.1137/1.9781611975673.80.
7
Vectorial Dimension Reduction for Tensors Based on Bayesian Inference.基于贝叶斯推理的张量向量维数约简
IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4579-4592. doi: 10.1109/TNNLS.2017.2739131. Epub 2017 Nov 21.
9
Bayesian Robust Tensor Factorization for Incomplete Multiway Data.贝叶斯稳健张量分解在不完全多路数据中的应用。
IEEE Trans Neural Netw Learn Syst. 2016 Apr;27(4):736-48. doi: 10.1109/TNNLS.2015.2423694. Epub 2015 Jun 9.

引用本文的文献

3
A biomarker discovery framework for childhood anxiety.儿童焦虑症的生物标志物发现框架。
Front Psychiatry. 2023 Jul 17;14:1158569. doi: 10.3389/fpsyt.2023.1158569. eCollection 2023.
4
Integrative Factor Regression and Its Inference for Multimodal Data Analysis.多模态数据分析的综合因子回归及其推断
J Am Stat Assoc. 2022;117(540):2207-2221. doi: 10.1080/01621459.2021.1914635. Epub 2021 May 20.
5
Tensor-on-tensor regression.张量对张量回归
J Comput Graph Stat. 2018;27(3):638-647. doi: 10.1080/10618600.2017.1401544. Epub 2018 Jun 6.

本文引用的文献

1
Partially Observed Dynamic Tensor Response Regression.部分观测动态张量响应回归
J Am Stat Assoc. 2023;118(541):424-439. doi: 10.1080/01621459.2021.1938082. Epub 2021 Jul 19.
2
Bayesian factorizations of big sparse tensors.大稀疏张量的贝叶斯因式分解
J Am Stat Assoc. 2015;110(512):1562-1576. doi: 10.1080/01621459.2014.983233. Epub 2016 Jan 15.
4
Discriminating sample groups with multi-way data.用多向数据区分样本组。
Biostatistics. 2017 Jul 1;18(3):434-450. doi: 10.1093/biostatistics/kxw057.
5
MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA.用于纵向关系数据的多线性张量回归
Ann Appl Stat. 2015 Sep;9(3):1169-1193. doi: 10.1214/15-AOAS839. Epub 2015 Nov 2.
10
Eigenfaces for recognition.特征脸识别。
J Cogn Neurosci. 1991 Winter;3(1):71-86. doi: 10.1162/jocn.1991.3.1.71.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验