文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration.

作者信息

Sun Shouye, Cui Yutao, Yuan Baoming, Dou Minghan, Wang Gan, Xu Hang, Wang Jingwei, Yin Wen, Wu Dankai, Peng Chuangang

机构信息

Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China.

出版信息

Front Bioeng Biotechnol. 2023 Jan 30;11:1117647. doi: 10.3389/fbioe.2023.1117647. eCollection 2023.


DOI:10.3389/fbioe.2023.1117647
PMID:36793443
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9923112/
Abstract

Drug delivery systems composed of osteogenic substances and biological materials are of great significance in enhancing bone regeneration, and appropriate biological carriers are the cornerstone for their construction. Polyethylene glycol (PEG) is favored in bone tissue engineering due to its good biocompatibility and hydrophilicity. When combined with other substances, the physicochemical properties of PEG-based hydrogels fully meet the requirements of drug delivery carriers. Therefore, this paper reviews the application of PEG-based hydrogels in the treatment of bone defects. The advantages and disadvantages of PEG as a carrier are analyzed, and various modification methods of PEG hydrogels are summarized. On this basis, the application of PEG-based hydrogel drug delivery systems in promoting bone regeneration in recent years is summarized. Finally, the shortcomings and future developments of PEG-based hydrogel drug delivery systems are discussed. This review provides a theoretical basis and fabrication strategy for the application of PEG-based composite drug delivery systems in local bone defects.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/26b3fb68addb/fbioe-11-1117647-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/bf51bf270797/FBIOE_fbioe-2023-1117647_wc_sch1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/40d4a836d530/fbioe-11-1117647-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/c3c89551e365/fbioe-11-1117647-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/cc7c58578593/fbioe-11-1117647-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/bca270f8f19f/fbioe-11-1117647-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/52ef09cd5d5b/fbioe-11-1117647-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/ffa9efa5a1b4/fbioe-11-1117647-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/26b3fb68addb/fbioe-11-1117647-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/bf51bf270797/FBIOE_fbioe-2023-1117647_wc_sch1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/40d4a836d530/fbioe-11-1117647-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/c3c89551e365/fbioe-11-1117647-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/cc7c58578593/fbioe-11-1117647-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/bca270f8f19f/fbioe-11-1117647-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/52ef09cd5d5b/fbioe-11-1117647-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/ffa9efa5a1b4/fbioe-11-1117647-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2785/9923112/26b3fb68addb/fbioe-11-1117647-g007.jpg

相似文献

[1]
Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration.

Front Bioeng Biotechnol. 2023-1-30

[2]
Hydrogel Drug Delivery Systems for Bone Regeneration.

Pharmaceutics. 2023-4-25

[3]
Nanoparticle-Based Drug Delivery Systems for Enhancing Bone Regeneration.

ACS Biomater Sci Eng. 2024-3-11

[4]
RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects.

Acta Biomater. 2018-6-7

[5]
Growth Factor Delivery for the Repair of a Critical Size Tibia Defect Using an Acellular, Biodegradable Polyethylene Glycol-Albumin Hydrogel Implant.

ACS Biomater Sci Eng. 2020-1-13

[6]
Biodegradation and bone formation of various polyethylene glycol hydrogels in acute and chronic sites in mini-pigs.

Clin Oral Implants Res. 2014-4

[7]
GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances.

Biomater Res. 2023-9-15

[8]
Dexamethasone-loaded, injectable pullulan-poly(ethylene glycol) hydrogels for bone tissue regeneration in chronic inflammatory conditions.

Mater Sci Eng C Mater Biol Appl. 2021-11

[9]
Click-based injectable bioactive PEG-hydrogels guide rapid craniomaxillofacial bone regeneration by the spatiotemporal delivery of rhBMP-2.

J Mater Chem B. 2023-4-5

[10]
Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives.

J Biomed Mater Res A. 2015-3

引用本文的文献

[1]
Review on Electrospray Nanoparticles for Drug Delivery: Exploring Applications.

Polym Adv Technol. 2024-7

[2]
Advances in Hydrogel-Based Delivery of RNA Drugs for Antitumor Therapy.

Gels. 2025-8-11

[3]
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications.

Polymers (Basel). 2025-7-24

[4]
The role of electrical stimulation in bone regeneration: mechanistic insights and therapeutic advances.

Bioelectron Med. 2025-8-8

[5]
Synthesis and Characterization of PEG--1-Vinyl Imidazole Diblock Copolymers and Their Preliminary Evaluation for Biomedical Applications.

Polymers (Basel). 2025-6-9

[6]
Challenges and future perspectives in using mesenchymal stem cells for efficient bone fracture healing.

Front Bioeng Biotechnol. 2025-5-30

[7]
Traditional Chinese Medicine-Loaded Hydrogels: An Emerging Strategy for the Treatment of Bone Infections.

Pharmaceutics. 2025-4-14

[8]
Engineering the Immune Response to Biomaterials.

Adv Sci (Weinh). 2025-5

[9]
Targeting of C-ROS-1 Activity Using a Controlled Release Carrier to Treat Craniosynostosis in a Preclinical Model of Saethre-Chotzen Syndrome.

J Tissue Eng Regen Med. 2024-5-9

[10]
Polymer-Based Scaffolds as an Implantable Material in Regenerative Dentistry: A Review.

J Funct Biomater. 2025-2-24

本文引用的文献

[1]
Nobiletin, a NF-κB signaling antagonist, promotes BMP-induced bone formation.

FASEB Bioadv. 2022-12-21

[2]
Poly(N-vinylpyrrolidone)-Laponite XLG Nanocomposite Hydrogels: Characterization, Properties and Comparison with Divinyl Monomer-Crosslinked Hydrogels.

Polymers (Basel). 2022-10-8

[3]
A novel BMP2 secretagogue ameliorates glucocorticoid induced oxidative stress in osteoblasts by activating NRF2 dependent survival while promoting Wnt/β-catenin mediated osteogenesis.

Free Radic Biol Med. 2022-9

[4]
Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection.

Nat Commun. 2022-7-22

[5]
Epiprofin Transcriptional Activation Promotes Ameloblast Induction From Mouse Induced Pluripotent Stem Cells the BMP-Smad Signaling Axis.

Front Bioeng Biotechnol. 2022-6-21

[6]
MiR-20a-5p facilitates cartilage repair in osteoarthritis via suppressing mitogen-activated protein kinase kinase kinase 2.

Bioengineered. 2022-5

[7]
β-Ecdysterone Enhanced Bone Regeneration Through the BMP-2/SMAD/RUNX2/Osterix Signaling Pathway.

Front Cell Dev Biol. 2022-5-20

[8]
Dual Delivery of BMP2 and IGF1 Through Injectable Hydrogel Promotes Cranial Bone Defect Healing.

Tissue Eng Part A. 2022-9

[9]
Efficient healing of large osseous segmental defects using optimized chemically modified messenger RNA encoding BMP-2.

Sci Adv. 2022-2-18

[10]
A combined cell and growth factor delivery for the repair of a critical size tibia defect using biodegradable hydrogel implants.

J Tissue Eng Regen Med. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索