Suppr超能文献

用于时空分类的异构递归脉冲神经网络

Heterogeneous recurrent spiking neural network for spatio-temporal classification.

作者信息

Chakraborty Biswadeep, Mukhopadhyay Saibal

机构信息

Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States.

出版信息

Front Neurosci. 2023 Jan 30;17:994517. doi: 10.3389/fnins.2023.994517. eCollection 2023.

Abstract

Spiking Neural Networks are often touted as brain-inspired learning models for the third wave of Artificial Intelligence. Although recent SNNs trained with supervised backpropagation show classification accuracy comparable to deep networks, the performance of unsupervised learning-based SNNs remains much lower. This paper presents a heterogeneous recurrent spiking neural network (HRSNN) with unsupervised learning for spatio-temporal classification of video activity recognition tasks on RGB (KTH, UCF11, UCF101) and event-based datasets (DVS128 Gesture). We observed an accuracy of 94.32% for the KTH dataset, 79.58% and 77.53% for the UCF11 and UCF101 datasets, respectively, and an accuracy of 96.54% on the event-based DVS Gesture dataset using the novel unsupervised HRSNN model. The key novelty of the HRSNN is that the recurrent layer in HRSNN consists of heterogeneous neurons with varying firing/relaxation dynamics, and they are trained via heterogeneous spike-time-dependent-plasticity (STDP) with varying learning dynamics for each synapse. We show that this novel combination of heterogeneity in architecture and learning method outperforms current homogeneous spiking neural networks. We further show that HRSNN can achieve similar performance to state-of-the-art backpropagation trained supervised SNN, but with less computation (fewer neurons and sparse connection) and less training data.

摘要

脉冲神经网络常被吹捧为人工智能第三次浪潮中受大脑启发的学习模型。尽管最近通过监督反向传播训练的脉冲神经网络在分类准确率上可与深度网络相媲美,但基于无监督学习的脉冲神经网络的性能仍要低得多。本文提出了一种具有无监督学习能力的异构递归脉冲神经网络(HRSNN),用于对RGB(KTH、UCF11、UCF101)和基于事件的数据集(DVS128手势)上的视频活动识别任务进行时空分类。我们观察到,使用新型无监督HRSNN模型时,在KTH数据集上的准确率为94.32%,在UCF11和UCF101数据集上的准确率分别为79.58%和77.53%,在基于事件的DVS手势数据集上的准确率为96.54%。HRSNN的关键新颖之处在于,其递归层由具有不同发放/弛豫动态的异构神经元组成,并且通过针对每个突触具有不同学习动态的异构脉冲时间依赖可塑性(STDP)进行训练。我们表明,这种架构和学习方法中的异构性的新颖组合优于当前的同构脉冲神经网络。我们进一步表明,HRSNN可以实现与最先进的经过反向传播训练的监督脉冲神经网络相似的性能,但计算量更少(神经元更少且连接稀疏)且训练数据更少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验