Stromatias Evangelos, Soto Miguel, Serrano-Gotarredona Teresa, Linares-Barranco Bernabé
Instituto de Microelectrónica de Sevilla (CNM), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de SevillaSevilla, Spain.
Front Neurosci. 2017 Jun 28;11:350. doi: 10.3389/fnins.2017.00350. eCollection 2017.
This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN) System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS) chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77%) and Poker-DVS (100%) real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.
本文介绍了一种新颖的方法,用于在脉冲神经网络(SNN)系统中训练事件驱动分类器。当使用合成输入数据和从动态视觉传感器(DVS)芯片捕获的真实数据时,该系统能够产生良好的分类结果。所提出的监督方法利用先前SNN层的任意拓扑结构提供的脉冲活动来构建直方图,并使用随机梯度下降算法在帧域中训练分类器。此外,这种方法可以处理SNN中的泄漏积分发放神经元模型,这对于实际的SNN应用来说是一个理想的特性,因为在没有输入的情况下,神经激活必须在一段时间后逐渐消失。因此,这种构建直方图的方式捕获了紧接在分类器之前的脉冲动态。我们使用不同的合成编码以及真实的DVS感官数据集(如N-MNIST、MNIST-DVS和Poker-DVS),在MNIST数据集上测试了我们的方法,使用相同的网络拓扑结构和特征图。我们通过使用脉冲卷积网络在N-MNIST(97.77%)和Poker-DVS(100%)真实DVS数据集上实现了迄今为止报告的最高分类准确率,证明了我们方法的有效性。此外,通过使用所提出的方法,我们能够重新训练先前报告的脉冲神经网络的输出层,并将其性能提高2%,这表明所提出的分类器可以用作在使用基于无监督脉冲学习方法提取特征的工作中的输出层。此外,我们还分析了SNN性能指标,如总事件活动和网络延迟,这些指标与最终的硬件实现相关。总之,本文将无监督训练的SNN与监督训练的SNN分类器聚合在一起,将它们组合并应用于合成的和来自真实DVS芯片的异构基准测试集。