Suppr超能文献

预测肾透明细胞癌核分级的放射基因组学研究。

Radiogenomics study to predict the nuclear grade of renal clear cell carcinoma.

作者信息

He Xuan-Ming, Zhao Jian-Xin, He Di-Liang, Ren Jia-Liang, Zhao Lian-Ping, Huang Gang

机构信息

The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China.

GE Healthcare China, Beijing, China.

出版信息

Eur J Radiol Open. 2023 Jan 28;10:100476. doi: 10.1016/j.ejro.2023.100476. eCollection 2023.

Abstract

PURPOSE

To develop models based on radiomics and genomics for predicting the histopathologic nuclear grade with localized clear cell renal cell carcinoma (ccRCC) and to assess whether macro-radiomics models can predict the microscopic pathological changes.

METHOD

In this multi-institutional retrospective study, a computerized tomography (CT) radiomic model for nuclear grade prediction was developed. Utilizing a genomics analysis cohort, nuclear grade-associated gene modules were identified, and a gene model was constructed based on top 30 hub mRNA to predict the nuclear grade. Using a radiogenomic development cohort, biological pathways were enriched by hub genes and a radiogenomic map was created.

RESULTS

The four-features-based SVM model predicted nuclear grade with an area under the curve (AUC) score of 0.94 in validation sets, while a five-gene-based model predicted nuclear grade with an AUC of 0.73 in the genomics analysis cohort. A total of five gene modules were identified to be associated with the nuclear grade. Radiomic features were only associated with 271 out of 603 genes in five gene modules and eight top 30 hub genes. Differences existed in the enrichment pathway between associated and un-associated with radiomic features, which were associated with two genes of five-gene signatures in the mRNA model.

CONCLUSION

The CT radiomics models exhibited higher predictive performance than mRNA models. The association between radiomic features and mRNA related to nuclear grade is not universal.

摘要

目的

基于放射组学和基因组学开发模型,以预测局限性透明细胞肾细胞癌(ccRCC)的组织病理学核分级,并评估宏观放射组学模型是否能够预测微观病理变化。

方法

在这项多机构回顾性研究中,开发了一种用于核分级预测的计算机断层扫描(CT)放射组学模型。利用一个基因组分析队列,识别出与核分级相关的基因模块,并基于前30个核心mRNA构建了一个基因模型来预测核分级。使用一个放射基因组学开发队列,通过核心基因丰富生物通路并创建了一个放射基因组图谱。

结果

基于四个特征的支持向量机(SVM)模型在验证集中预测核分级的曲线下面积(AUC)得分为0.94,而基于五个基因的模型在基因组分析队列中预测核分级的AUC为0.73。共识别出五个与核分级相关的基因模块。放射组学特征仅与五个基因模块中的603个基因中的271个以及八个前30个核心基因相关。与放射组学特征相关和不相关的基因在富集通路方面存在差异,这些差异与mRNA模型中五个基因特征的两个基因相关。

结论

CT放射组学模型表现出比mRNA模型更高的预测性能。放射组学特征与核分级相关的mRNA之间的关联并不普遍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3155/9922923/7fbcf0eebca4/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验