Suppr超能文献

软体动物和机器人的挖掘基础。

Fundamentals of burrowing in soft animals and robots.

作者信息

Dorgan Kelly M, Daltorio Kathryn A

机构信息

Dauphin Island Sea Lab, Dauphin Island, AL, United States.

School of Marine & Environmental Sciences, University of South Alabama, Mobile, AL, United States.

出版信息

Front Robot AI. 2023 Jan 30;10:1057876. doi: 10.3389/frobt.2023.1057876. eCollection 2023.

Abstract

Creating burrows through natural soils and sediments is a problem that evolution has solved numerous times, yet burrowing locomotion is challenging for biomimetic robots. As for every type of locomotion, forward thrust must overcome resistance forces. In burrowing, these forces will depend on the sediment mechanical properties that can vary with grain size and packing density, water saturation, organic matter and depth. The burrower typically cannot change these environmental properties, but can employ common strategies to move through a range of sediments. Here we propose four challenges for burrowers to solve. First, the burrower has to in a solid substrate, overcoming resistance by e.g., excavation, fracture, compression, or fluidization. Second, the burrower needs to . A compliant body helps fit into the possibly irregular space, but reaching the new space requires non-rigid kinematics such as longitudinal extension through peristalsis, unbending, or eversion. Third, to generate the required thrust to overcome resistance, the burrower needs to . Anchoring can be achieved through anisotropic friction or radial expansion, or both. Fourth, the burrower must to adapt the burrow shape to avoid or access different parts of the environment. Our hope is that by breaking the complexity of burrowing into these component challenges, engineers will be better able to learn from biology, since animal performance tends to exceed that of their robotic counterparts. Since body size strongly affects space creation, scaling may be a limiting factor for burrowing robotics, which are typically built at larger scales. Small robots are becoming increasingly feasible, and larger robots with non-biologically-inspired anteriors (or that traverse pre-existing tunnels) can benefit from a deeper understanding of the breadth of biological solutions in current literature and to be explored by continued research.

摘要

在天然土壤和沉积物中挖掘洞穴是一个进化已经多次解决的问题,但挖掘运动对于仿生机器人来说具有挑战性。对于每种运动类型,向前的推力必须克服阻力。在挖掘过程中,这些力将取决于沉积物的机械特性,而这些特性会随颗粒大小、堆积密度、水饱和度、有机物和深度而变化。挖掘者通常无法改变这些环境特性,但可以采用常见策略在一系列沉积物中移动。在此,我们提出挖掘者需要解决的四个挑战。首先,挖掘者必须在坚实的基质中 ,通过例如挖掘、破碎、压缩或流化来克服阻力。其次,挖掘者需要 。柔顺的身体有助于适应可能不规则的空间,但进入新空间需要非刚性运动学,例如通过蠕动、伸直或外翻进行纵向伸展。第三,为了产生所需的推力来克服阻力,挖掘者需要 。可以通过各向异性摩擦或径向膨胀,或两者兼用来实现锚固。第四,挖掘者必须 以调整洞穴形状,以避开或进入环境的不同部分。我们希望,通过将挖掘的复杂性分解为这些组成挑战,工程师将能够更好地从生物学中学习,因为动物的表现往往超过其机器人同类。由于身体大小强烈影响空间创造,缩放可能是挖掘机器人技术的一个限制因素,挖掘机器人通常构建为更大的尺寸。小型机器人越来越可行,而具有非生物启发前部(或穿越预先存在的隧道)的大型机器人可以从更深入了解当前文献中生物解决方案的广度以及通过持续研究进行探索中受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/9923007/c7df56255b16/frobt-10-1057876-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验