Suppr超能文献

挖掘式软体机器人面临的重大挑战。

Grand challenges for burrowing soft robots.

作者信息

Le Caitlin L, Yirmibesoglu Osman Dogan, Even Sean, Buckner Trevor, Ozkan-Aydin Yasemin, Kramer-Bottiglio Rebecca

机构信息

Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, United States.

Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, United States.

出版信息

Front Robot AI. 2025 Feb 13;12:1525186. doi: 10.3389/frobt.2025.1525186. eCollection 2025.

Abstract

Robotic burrowing holds promise for applications in agriculture, resource extraction, and infrastructure development, but current approaches are ineffective, inefficient, or cause significant environmental disruption. In contrast, natural burrowers penetrate substrates with minimal disturbance, providing biomechanical principles that could inspire more efficient and sustainable mechanisms. A notable feature of many natural burrowers is their reliance on soft body compositions, raising the question of whether softness contributes to their burrowing success. This review explores the role of soft materials in biological burrowing and their implications for robotic design. We examine the mechanisms that soft-bodied organisms and soft robots employ for submerging and subterranean locomotion, focusing on how softness enhances efficiency and adaptability in granular media. We analyze the gaps between the capabilities of natural burrowers and soft robotic burrowers, identify grand challenges, and propose opportunities to enhance robotic burrowing performance. By bridging biological principles with engineering innovation, this review aims to inform the development of next-generation burrowing robots capable of operating with the efficiency and efficacy seen in nature.

摘要

机器人挖掘技术在农业、资源开采和基础设施建设等领域具有应用前景,但目前的方法效率低下、效果不佳,或会对环境造成严重破坏。相比之下,天然挖掘者在对基质造成最小干扰的情况下就能穿透,其生物力学原理可为更高效、可持续的挖掘机制提供灵感。许多天然挖掘者的一个显著特征是它们依赖柔软的身体结构,这就引出了一个问题:柔软性是否有助于它们挖掘成功。本综述探讨了柔软材料在生物挖掘中的作用及其对机器人设计的影响。我们研究了软体生物和软体机器人用于潜入和地下移动的机制,重点关注柔软性如何提高在颗粒介质中的效率和适应性。我们分析了天然挖掘者和软体机器人挖掘能力之间的差距,确定了重大挑战,并提出了提高机器人挖掘性能的机会。通过将生物学原理与工程创新相结合,本综述旨在为下一代挖掘机器人的开发提供参考,使其能够具备自然界中所见的效率和效能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5659/11864953/6bb45f6e9a21/frobt-12-1525186-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验