Suppr超能文献

一种用于检测……中K1多聚唾液酸荚膜的生物正交化学方法。 (原文中“in”后面缺少具体内容)

A bioorthogonal chemistry approach to detect the K1 polysialic acid capsule in .

作者信息

Rigolot Vincent, Rossez Yannick, Biot Christophe, Lion Cédric

机构信息

Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille France

出版信息

RSC Chem Biol. 2022 Dec 22;4(2):173-183. doi: 10.1039/d2cb00219a. eCollection 2023 Feb 8.

Abstract

Most strains associated with neonatal meningitis express the K1 capsule, a sialic acid polysaccharide that is directly related to their pathogenicity. Metabolic oligosaccharide engineering (MOE) has mostly been developed in eukaryotes, but has also been successfully applied to the study of several oligosaccharides or polysaccharides constitutive of the bacterial cell wall. However, bacterial capsules are seldom targeted despite their important role as virulence factors, and the K1 polysialic acid (PSA) antigen that shields bacteria from the immune system still remains untackled. Herein, we report a fluorescence microplate assay that allows the fast and facile detection of K1 capsules with an approach that combines MOE and bioorthogonal chemistry. We exploit the incorporation of synthetic analogues of -acetylmannosamine or -acetylneuraminic acid, metabolic precursors of PSA, and copper-catalysed azide-alkyne cycloaddition (CuAAC) as the click chemistry reaction to specifically label the modified K1 antigen with a fluorophore. The method was optimized, validated by capsule purification and fluorescence microscopy, and applied to the detection of whole encapsulated bacteria in a miniaturized assay. We observe that analogues of ManNAc are readily incorporated into the capsule while those of Neu5Ac are less efficiently metabolized, which provides useful information regarding the capsule biosynthetic pathways and the promiscuity of the enzymes involved. Moreover, this microplate assay is transferable to screening approaches and may provide a platform to identify novel capsule-targeted antibiotics that would circumvent resistance issues.

摘要

大多数与新生儿脑膜炎相关的菌株都表达K1荚膜,这是一种与它们的致病性直接相关的唾液酸多糖。代谢寡糖工程(MOE)大多是在真核生物中开发的,但也已成功应用于对构成细菌细胞壁的几种寡糖或多糖的研究。然而,尽管细菌荚膜作为毒力因子具有重要作用,但很少被作为靶点,而且保护细菌免受免疫系统攻击的K1多唾液酸(PSA)抗原仍然未得到解决。在此,我们报告了一种荧光微孔板检测方法,该方法结合了MOE和生物正交化学,能够快速、简便地检测K1荚膜。我们利用PSA的代谢前体——N-乙酰甘露糖胺或N-乙酰神经氨酸的合成类似物的掺入,以及铜催化的叠氮化物-炔烃环加成反应(CuAAC)作为点击化学反应,用荧光团特异性标记修饰后的K1抗原。该方法经过优化,通过荚膜纯化和荧光显微镜验证,并应用于小型化检测中全被包裹细菌的检测。我们观察到,ManNAc的类似物很容易掺入到荚膜中,而Neu5Ac的类似物代谢效率较低,这为荚膜生物合成途径和相关酶的混杂性提供了有用信息。此外,这种微孔板检测方法可转移到筛选方法中,并可能提供一个平台来鉴定能够规避耐药性问题的新型靶向荚膜抗生素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d7b/9906323/8355b42d3540/d2cb00219a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验