Suppr超能文献

卷积神经网络揭示了专业技能假设在计算上的不合理性。

CNNs reveal the computational implausibility of the expertise hypothesis.

作者信息

Kanwisher Nancy, Gupta Pranjul, Dobs Katharina

机构信息

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

iScience. 2023 Jan 14;26(2):105976. doi: 10.1016/j.isci.2023.105976. eCollection 2023 Feb 17.

Abstract

Face perception has long served as a classic example of domain specificity of mind and brain. But an alternative "expertise" hypothesis holds that putatively face-specific mechanisms are actually domain-general, and can be recruited for the perception of other objects of expertise (e.g., cars for car experts). Here, we demonstrate the computational implausibility of this hypothesis: Neural network models optimized for generic object categorization provide a better foundation for expert fine-grained discrimination than do models optimized for face recognition.

摘要

长期以来,面部感知一直是心智和大脑领域特异性的经典例子。但另一种“专业知识”假说认为,所谓的面部特异性机制实际上是领域通用的,并且可以用于感知其他专业对象(例如,汽车专家对汽车的感知)。在此,我们证明了这一假说在计算上的不合理性:针对通用物体分类进行优化的神经网络模型,比针对人脸识别进行优化的模型,为专家的细粒度辨别提供了更好的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d13/9923184/070653019105/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验