Suppr超能文献

通过电子给体-受体络合物(EDA)和光催化实现α-溴代酰胺与未活化烯烃偶联形成γ-内酰胺

Coupling of α-bromoamides and unactivated alkenes to form γ-lactams through EDA and photocatalysis.

作者信息

Treacy Sean M, Vaz Daniel R, Noman Syed, Tard Cédric, Rovis Tomislav

机构信息

Department of Chemistry, Columbia University New York NY 10027 USA

Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France.

出版信息

Chem Sci. 2023 Jan 20;14(6):1569-1574. doi: 10.1039/d2sc05973h. eCollection 2023 Feb 8.

Abstract

γ-Lactams are prevalent in small-molecule pharmaceuticals and provide useful precursors to highly substituted pyrrolidines. Despite numerous methods for the synthesis of this valuable motif, previous redox approaches to γ-lactam synthesis from α-haloamides and olefins require additional electron withdrawing functionality as well as -aryl substitution to promote electrophilicity of the intermediate radical and prevent competitive O-nucleophilicity about the amide. Using α-bromo imides and α-olefins, our strategy enables the synthesis of monosubstituted protected γ-lactams in a formal [3 + 2] fashion. These species are poised for further derivatization into more complex heterocyclic scaffolds, complementing existing methods. C-Br bond scission occurs through two complementary approaches, the formation of an electron donor-acceptor complex between the bromoimide and a nitrogenous base which undergoes photoinduced electron transfer, or triplet sensitization with photocatalyst, to furnish an electrophilic carbon-centered radical. The addition of Lewis acids allows for further increased electrophilicity of the intermediate carbon-centered radical, enabling tertiary substituted α-Br-imides to be used as coupling partners as well as internal olefins.

摘要

γ-内酰胺在小分子药物中普遍存在,并为高度取代的吡咯烷提供有用的前体。尽管有许多合成这一有价值结构单元的方法,但以前从α-卤代酰胺和烯烃合成γ-内酰胺的氧化还原方法需要额外的吸电子官能团以及芳基取代,以促进中间体自由基的亲电性并防止酰胺周围竞争性的氧亲核性。使用α-溴代酰亚胺和α-烯烃,我们的策略能够以形式上的[3 + 2]方式合成单取代的受保护γ-内酰胺。这些物种有望进一步衍生为更复杂的杂环骨架,补充现有方法。C-Br键断裂通过两种互补方法发生,即溴代酰亚胺与含氮碱之间形成电子供体-受体复合物,该复合物经历光诱导电子转移,或用光催化剂进行三线态敏化,以提供亲电性的碳中心自由基。路易斯酸的加入可进一步提高中间体碳中心自由基的亲电性,使叔取代的α-溴代酰亚胺能够用作偶联伙伴以及内烯烃。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6ab/9906710/6cbc2ded2772/d2sc05973h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验