McGhie Lewis, Marotta Alessandro, Loftus Patrick O, Seeberger Peter H, Funes-Ardoiz Ignacio, Molloy John J
Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam 14476, Germany.
Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany.
J Am Chem Soc. 2024 Jun 12;146(23):15850-15859. doi: 10.1021/jacs.4c02261. Epub 2024 May 28.
Light-driven strategies that enable the chemoselective activation of a specific bond in multifunctional systems are comparatively underexplored in comparison to transition-metal-based technologies, yet desirable when considering the controlled exploration of chemical space. With the current drive to discover next-generation therapeutics, reaction design that enables the strategic incorporation of an sp carbon center, containing multiple synthetic handles for the subsequent exploration of chemical space would be highly enabling. Here, we describe the photoactivation of ambiphilic C1 units to generate α-bimetalloid radicals using only a Lewis base and light source to directly activate the C-I bond. Interception of these transient radicals with various SOMOphiles enables the rapid synthesis of organic scaffolds containing synthetic handles (B, Si, and Ge) for subsequent orthogonal activation. In-depth theoretical and mechanistic studies reveal the prominent role of 2,6-lutidine in forming a photoactive charge transfer complex and in stabilizing generated iodine radicals, as well as the influential role of the boron p-orbital in the activation/weakening of the C-I bond. This simple and efficient methodology enabled expedient access to functionalized 3D frameworks that can be further derivatized using available technologies for C-B and C-Si bond activation.
与基于过渡金属的技术相比,能够在多功能体系中实现特定化学键化学选择性活化的光驱动策略尚未得到充分探索,但在考虑对化学空间进行可控探索时却很有必要。在当前发现下一代治疗药物的推动下,能够战略性地引入一个含有多个合成手柄以用于后续化学空间探索的sp碳中心的反应设计将具有很大的推动作用。在此,我们描述了双亲性C1单元的光活化过程,即仅使用一种路易斯碱和光源直接活化C-I键来生成α-双金属自由基。用各种亲单电子体捕获这些瞬态自由基能够快速合成含有用于后续正交活化的合成手柄(硼、硅和锗)的有机支架。深入的理论和机理研究揭示了2,6-二甲基吡啶在形成光活性电荷转移络合物以及稳定生成的碘自由基方面的重要作用,以及硼p轨道在C-I键活化/弱化中的影响作用。这种简单高效的方法能够方便地获得功能化的三维骨架,这些骨架可以使用现有的C-B和C-Si键活化技术进一步衍生化。