Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Department of Medicine, University of California, San Francisco, CA, USA.
EMBO J. 2023 Apr 3;42(7):e112165. doi: 10.15252/embj.2022112165. Epub 2023 Feb 16.
The opportunistic pathogen Pseudomonas aeruginosa adapts to solid surfaces to enhance virulence and infect its host. Type IV pili (T4P), long and thin filaments that power surface-specific twitching motility, allow single cells to sense surfaces and control their direction of movement. T4P distribution is polarized to the sensing pole by the chemotaxis-like Chp system via a local positive feedback loop. However, how the initial spatially resolved mechanical signal is translated into T4P polarity is incompletely understood. Here, we demonstrate that the two Chp response regulators PilG and PilH enable dynamic cell polarization by antagonistically regulating T4P extension. By precisely quantifying the localization of fluorescent protein fusions, we show that phosphorylation of PilG by the histidine kinase ChpA controls PilG polarization. Although PilH is not strictly required for twitching reversals, it becomes activated upon phosphorylation and breaks the local positive feedback mechanism established by PilG, allowing forward-twitching cells to reverse. Chp thus uses a main output response regulator, PilG, to resolve mechanical signals in space and employs a second regulator, PilH, to break and respond when the signal changes. By identifying the molecular functions of two response regulators that dynamically control cell polarization, our work provides a rationale for the diversity of architectures often found in non-canonical chemotaxis systems.
机会性病原体铜绿假单胞菌适应固体表面以增强毒力并感染其宿主。 四型菌毛(T4P)是一种长而细的丝,可为表面特异性抽动运动提供动力,使单个细胞能够感知表面并控制其运动方向。通过局部正反馈环,类似于趋化作用的 Chp 系统将 T4P 分布极性化到感应极。 然而,初始的空间分辨机械信号如何转化为 T4P 极性尚不完全清楚。 在这里,我们证明了两个 Chp 反应调节剂 PilG 和 PilH 通过拮抗调节 T4P 延伸来实现动态细胞极化。 通过精确量化荧光蛋白融合的定位,我们表明组氨酸激酶 ChpA 对 PilG 的磷酸化控制着 PilG 的极化。 尽管 PilH 对于抽动反转并非严格必需,但它在磷酸化后被激活,并破坏了 PilG 建立的局部正反馈机制,从而使向前抽动的细胞能够反转。 Chp 因此使用主输出响应调节剂 PilG 来解析空间中的机械信号,并使用第二个调节剂 PilH 在信号发生变化时打破并响应。 通过确定动态控制细胞极化的两个反应调节剂的分子功能,我们的工作为非典型趋化系统中经常发现的不同架构提供了合理依据。