Carreira Luís António Menezes, Szadkowski Dobromir, Müller Franziska, Søgaard-Andersen Lotte
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.
Curr Opin Cell Biol. 2022 Jun;76:102076. doi: 10.1016/j.ceb.2022.102076. Epub 2022 Mar 31.
Bacterial cells are spatiotemporally highly organised with proteins localising dynamically to distinct subcellular regions. Motility in the rod-shaped Myxococcus xanthus cells represents an example of signal-induced spatiotemporal regulation of cell polarity. M. xanthus cells move across surfaces with defined front-rear polarity; occasionally, they invert polarity and, in parallel, reverse direction of movement. The polarity module establishes front-rear polarity between reversals and consists of the Ras-like GTPase MglA and its cognate GEF and GAP, that all localise asymmetrically to the cell poles. The Frz chemosensory system constitutes the polarity inversion module and interfaces with the proteins of the polarity module, thereby triggering their polar repositioning. As a result, the polarity proteins, over time, toggle between the cell poles causing cells to oscillate irregularly. Here, we review recent progress in how front-rear polarity is established by the polarity module and inverted by the Frz system and highlight open questions for future studies.
细菌细胞在时空上高度有序,蛋白质动态定位到不同的亚细胞区域。杆状的黄色粘球菌细胞的运动性代表了信号诱导的细胞极性时空调节的一个例子。黄色粘球菌细胞以明确的前后极性在表面移动;偶尔,它们会反转极性,并同时反转运动方向。极性模块在反转之间建立前后极性,由类Ras GTP酶MglA及其同源鸟嘌呤核苷酸交换因子(GEF)和GTP酶激活蛋白(GAP)组成,它们都不对称地定位在细胞两极。Frz化学感应系统构成极性反转模块,并与极性模块的蛋白质相互作用,从而触发它们的极性重新定位。结果,随着时间的推移,极性蛋白在细胞两极之间切换,导致细胞不规则振荡。在这里,我们综述了极性模块如何建立前后极性以及Frz系统如何反转极性的最新进展,并突出了未来研究中尚未解决的问题。