Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA.
Department of Medicine, School of Medicine, Stanford University, Stanford, California, USA.
J Am Med Inform Assoc. 2023 Apr 19;30(5):878-887. doi: 10.1093/jamia/ocad017.
There are over 363 customized risk models of the American College of Cardiology and the American Heart Association (ACC/AHA) pooled cohort equations (PCE) in the literature, but their gains in clinical utility are rarely evaluated. We build new risk models for patients with specific comorbidities and geographic locations and evaluate whether performance improvements translate to gains in clinical utility.
We retrain a baseline PCE using the ACC/AHA PCE variables and revise it to incorporate subject-level information of geographic location and 2 comorbidity conditions. We apply fixed effects, random effects, and extreme gradient boosting (XGB) models to handle the correlation and heterogeneity induced by locations. Models are trained using 2 464 522 claims records from Optum©'s Clinformatics® Data Mart and validated in the hold-out set (N = 1 056 224). We evaluate models' performance overall and across subgroups defined by the presence or absence of chronic kidney disease (CKD) or rheumatoid arthritis (RA) and geographic locations. We evaluate models' expected utility using net benefit and models' statistical properties using several discrimination and calibration metrics.
The revised fixed effects and XGB models yielded improved discrimination, compared to baseline PCE, overall and in all comorbidity subgroups. XGB improved calibration for the subgroups with CKD or RA. However, the gains in net benefit are negligible, especially under low exchange rates.
Common approaches to revising risk calculators incorporating extra information or applying flexible models may enhance statistical performance; however, such improvement does not necessarily translate to higher clinical utility. Thus, we recommend future works to quantify the consequences of using risk calculators to guide clinical decisions.
文献中有超过 363 个针对美国心脏病学会和美国心脏协会(ACC/AHA) pooled cohort equations(PCE)的定制风险模型,但很少有人评估它们在临床实用性方面的增益。我们为具有特定合并症和地理位置的患者构建新的风险模型,并评估性能的提高是否转化为临床实用性的提高。
我们使用 ACC/AHA PCE 变量重新训练基线 PCE,并对其进行修改,以纳入地理位置和 2 种合并症状况的个体水平信息。我们应用固定效应、随机效应和极端梯度增强(XGB)模型来处理由位置引起的相关性和异质性。模型使用来自 Optum©的 Clinformatics® Data Mart 的 2464522 份索赔记录进行训练,并在保留集(N=1056224)中进行验证。我们总体评估模型的性能,并根据是否存在慢性肾脏病(CKD)或类风湿性关节炎(RA)以及地理位置对模型进行细分。我们使用净收益评估模型的预期效用,并使用几种判别和校准指标评估模型的统计特性。
与基线 PCE 相比,修正后的固定效应和 XGB 模型在总体和所有合并症亚组中均提高了判别能力。XGB 改善了 CKD 或 RA 亚组的校准。然而,净收益的增加微不足道,尤其是在低汇率下。
在修订风险计算器时纳入额外信息或应用灵活模型的常见方法可能会提高统计性能;但是,这种改进不一定会转化为更高的临床实用性。因此,我们建议未来的工作量化使用风险计算器来指导临床决策的后果。