Department of Statistics, Tarbiat Modares University, Tehran, Iran.
PLoS One. 2023 Feb 16;18(2):e0266267. doi: 10.1371/journal.pone.0266267. eCollection 2023.
Over recent years, the state-of-the-art lasso and adaptive lasso have aquired remarkable consideration. Unlike the lasso technique, adaptive lasso welcomes the variables' effects in penalty meanwhile specifying adaptive weights to penalize coefficients in a different manner. However, if the initial values presumed for the coefficients are less than one, the corresponding weights would be relatively large, leading to an increase in bias. To dominate such an impediment, a new class of weighted lasso will be introduced that employs all aspects of data. That is to say, signs and magnitudes of the initial coefficients will be taken into account simultaneously for proposing appropriate weights. To allocate a particular form to the suggested penalty, the new method will be nominated as 'lqsso', standing for the least quantile shrinkage and selection operator. In this paper, we demonstate that lqsso encompasses the oracle properties under certain mild conditions and delineate an efficient algorithm for the computation purpose. Simulation studies reveal the predominance of our proposed methodology when compared with other lasso methods from various aspects, particularly in ultra high-dimensional condition. Application of the proposed method is further underlined with real-world problem based on the rat eye dataset.
近年来,最先进的套索和自适应套索得到了广泛的关注。与套索技术不同,自适应套索在惩罚中考虑了变量的影响,同时以不同的方式指定自适应权重来惩罚系数。然而,如果假定系数的初始值小于 1,则相应的权重将相对较大,导致偏差增加。为了克服这种障碍,将引入一类新的加权套索,它利用数据的各个方面。也就是说,将同时考虑初始系数的符号和大小,为提出适当的权重。为了给建议的惩罚赋予特定的形式,新方法将被命名为“lqsso”,代表最小分位数收缩和选择算子。在本文中,我们证明了 lqsso 在某些温和条件下具有 oracle 属性,并为计算目的制定了一种有效的算法。模拟研究表明,与其他套索方法相比,我们提出的方法在各个方面都具有优势,特别是在超高维条件下。基于大鼠眼数据集的实际问题进一步强调了所提出方法的应用。