Suppr超能文献

分位数回归中的分位数间收缩与变量选择

Interquantile Shrinkage and Variable Selection in Quantile Regression.

作者信息

Jiang Liewen, Bondell Howard D, Wang Huixia Judy

机构信息

Department of Statistics, North Carolina State University, Raleigh, NC 27606, U.S.A.

出版信息

Comput Stat Data Anal. 2014 Jan 1;69:208-219. doi: 10.1016/j.csda.2013.08.006.

Abstract

Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such commonality across quantiles. Furthermore, elimination of irrelevant predictors will also aid in estimation and interpretation. These motivations lead to the development of two penalization methods, which can identify the interquantile commonality and nonzero quantile coefficients simultaneously. The developed methods are based on a fused penalty that encourages sparsity of both quantile coefficients and interquantile slope differences. The oracle properties of the proposed penalization methods are established. Through numerical investigations, it is demonstrated that the proposed methods lead to simpler model structure and higher estimation efficiency than the traditional quantile regression estimation.

摘要

对多个条件分位数函数的检验提供了响应变量与协变量之间关系的全面视图。在分位数斜率系数具有一些共同特征的情况下,通过利用分位数之间的这种共性,可以提高估计效率和模型可解释性。此外,消除无关预测变量也将有助于估计和解释。这些动机促使了两种惩罚方法的发展,这两种方法可以同时识别分位数间的共性和非零分位数系数。所开发的方法基于一种融合惩罚,该惩罚鼓励分位数系数和分位数间斜率差异的稀疏性。建立了所提出惩罚方法的神谕性质。通过数值研究表明,与传统分位数回归估计相比,所提出的方法导致更简单的模型结构和更高的估计效率。

相似文献

2
Interquantile Shrinkage in Regression Models.回归模型中的四分位数间距收缩
J Comput Graph Stat. 2013;22(4). doi: 10.1080/10618600.2012.707454.
6
Quantile regression shrinkage and selection via the Lqsso.通过 Lqsso 进行分位数回归收缩和选择。
J Biopharm Stat. 2024 May;34(3):297-322. doi: 10.1080/10543406.2023.2198593. Epub 2023 Apr 9.
8
On the robustness of the adaptive lasso to model misspecification.关于自适应套索对模型误设的稳健性。
Biometrika. 2012 Sep;99(3):717-731. doi: 10.1093/biomet/ass027. Epub 2012 Jul 11.

本文引用的文献

1
Interquantile Shrinkage in Regression Models.回归模型中的四分位数间距收缩
J Comput Graph Stat. 2013;22(4). doi: 10.1080/10618600.2012.707454.
2
VARIABLE SELECTION FOR CENSORED QUANTILE REGRESION.删失分位数回归的变量选择
Stat Sin. 2013 Jan 1;23(1):145-167. doi: 10.5705/ss.2011.100.
3
Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension.用于分析超高维异质性的分位数回归
J Am Stat Assoc. 2012 Mar 1;107(497):214-222. doi: 10.1080/01621459.2012.656014. Epub 2012 Jun 11.
4
Noncrossing quantile regression curve estimation.非交叉分位数回归曲线估计
Biometrika. 2010 Dec;97(4):825-838. doi: 10.1093/biomet/asq048. Epub 2010 Aug 30.
5
VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS.非参数加法模型中的变量选择
Ann Stat. 2010 Aug 1;38(4):2282-2313. doi: 10.1214/09-AOS781.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验