Suppr超能文献

仿生股骨颈保留型髋关节假体的生物力学特性:有限元分析。

Biomechanical Properties of Bionic Collum Femoris Preserving Hip Prosthesis: A Finite Element Analysis.

机构信息

Key Laboratory of Ministry of Education for Trauma Treatment and Nerve Regeneration, National Center for Trauma Medicine, Department of Orthopaedics and Traumatology, Peking University People's Hospital, Beijing, China.

Department of Orthopaedics, Peking Union Medical College Hospital, Beijing, China.

出版信息

Orthop Surg. 2023 Apr;15(4):1126-1135. doi: 10.1111/os.13653. Epub 2023 Feb 16.

Abstract

OBJECTIVE

Compared with total hip replacement, conventional collum femoris preserving prosthesis has a better bone retention effect. However, damage to the trabecular bone of the proximal femur leads to inevitable abnormal stress distribution, which leads to increased risks of femoral neck bone absorption, periprosthetic fracture, prosthesis loosening, rotation, and sinking. Thus, we compare the biomechanical properties of collum femoris preserving (CFP) and bionic collum femoris preserving (BCFP) hip prostheses.

METHODS

The Sawbone digital model (#3503, left, medium) was selected as the research object. We used the Mimics 21.0 software to reconstruct the digital model of the femur and the SolidWorks 2019 software to build and assemble the three-dimensional models of CFP and BCFP prostheses. With the ANSYS Workbench 2021R1 software, the models were meshed and assigned values to simulate the load of a single foot under slow walking. We measured the mechanical distribution of the whole model and obtained the stress nephogram.

RESULTS

For CFP prosthesis, the peak stresses of the medial interface of the stem neck, the lateral interface of the stem neck, and the end of the stem were 64.894, 32.199, and 8.578 MPa, respectively; the peak stresses of the medial surface of the femoral shaft, the lateral surface of femoral shaft, the medial femoral neck bone-prosthesis interface (osteotomy interface), the lateral femoral neck bone-prosthesis interface (basal area), the lateral femoral neck bone-prosthesis interface (osteotomy interface), and the greater trochanter area were 28.093, 24.790, 14.388, 5.118, 4.179, and 8.245 MPa, respectively; the valley stress of the greater trochanter area was 1.134 MPa. For BCFP prosthesis, the peak stresses of the medial interface of the stem neck, the lateral interface of the stem neck, and the end of the stem were 47.015, 26.771, and 47.593 MPa, respectively; the peak stress of tension screw was 15.739 MPa; the peak stresses of the medial surface of the femoral shaft, the lateral surface of femoral shaft, the medial femoral neck bone-prosthesis interface (osteotomy interface), the lateral femoral neck bone-prosthesis interface (basal area), the lateral femoral neck bone-prosthesis interface (osteotomy interface) and the greater trochanter area were 28.581, 25.364, 15.624, 6.434, 4.986, and 8.796 MPa, respectively; the valley stress of the greater trochanter area was 1.419 MPa; the peak stress of bone-metal interface between the tension screw and the lateral surface of the femur was 5.858 MPa.

CONCLUSION

Compared with the CFP prosthesis, the design of the BCFP prosthesis is based on the lever balance theory. With the bionic reconstruction of tension trabeculae, BCFP prosthesis makes up for the defects of CFP prosthesis design, optimizes the stress distribution, and reduces the stress shelter effect of the proximal femur, which has better biomechanical properties.

摘要

目的

与全髋关节置换相比,传统股骨颈保留假体具有更好的保骨效果。然而,对股骨近端骨小梁的破坏导致不可避免的异常应力分布,这导致股骨颈骨吸收、假体周围骨折、假体松动、旋转和下沉的风险增加。因此,我们比较了股骨颈保留(CFP)和仿生股骨颈保留(BCFP)髋关节假体的生物力学性能。

方法

选择 Sawbone 数字模型(#3503,左侧,中等)作为研究对象。我们使用 Mimics 21.0 软件重建股骨的数字模型,并使用 SolidWorks 2019 软件构建和组装 CFP 和 BCFP 假体的三维模型。使用 ANSYS Workbench 2021R1 软件对模型进行网格划分并赋值,以模拟单脚慢走时的负载。我们测量了整个模型的力学分布,并获得了应力云图。

结果

对于 CFP 假体,颈干内界面、颈干外界面和柄末端的峰值应力分别为 64.894、32.199 和 8.578 MPa;股骨骨干内表面、股骨骨干外表面、股骨颈内侧骨-假体界面(截骨界面)、股骨颈外侧骨-假体界面(基底区)、股骨颈外侧骨-假体界面(截骨界面)和大转子区域的峰值应力分别为 28.093、24.790、14.388、5.118、4.179 和 8.245 MPa;大转子区域的谷值应力为 1.134 MPa。对于 BCFP 假体,颈干内界面、颈干外界面和柄末端的峰值应力分别为 47.015、26.771 和 47.593 MPa;张力螺钉的峰值应力为 15.739 MPa;股骨骨干内表面、股骨骨干外表面、股骨颈内侧骨-假体界面(截骨界面)、股骨颈外侧骨-假体界面(基底区)、股骨颈外侧骨-假体界面(截骨界面)和大转子区域的峰值应力分别为 28.581、25.364、15.624、6.434、4.986 和 8.796 MPa;大转子区域的谷值应力为 1.419 MPa;张力螺钉与股骨外表面之间的骨-金属界面的峰值应力为 5.858 MPa。

结论

与 CFP 假体相比,BCFP 假体的设计基于杠杆平衡理论。通过对张力小梁进行仿生重建,BCFP 假体弥补了 CFP 假体设计的缺陷,优化了应力分布,降低了股骨近端的应力屏蔽效应,具有更好的生物力学性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验