Suppr超能文献

在低磁场强度下全血中增强的 Xe T1 弛豫和 SPIONs 的存在。

Enhanced Xe T relaxation in whole blood and in the presence of SPIONs at low magnetic field strengths.

机构信息

Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

Magn Reson Med. 2023 Jul;90(1):21-33. doi: 10.1002/mrm.29619. Epub 2023 Feb 16.

Abstract

PURPOSE

To compare the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on the T of Xe and H and to measure the relaxation of Xe in blood at low and high magnetic field strengths.

METHODS

Xe and H T relaxometry was performed at low- and high-field strengths in samples containing different SPION concentrations, while imaging was used to compare the contrast obtainable in these two field regimes. In vivo experiments at variable field strengths were performed to determine the depolarization of Xe in blood and the feasibility of in vivo dissolved-phase spectroscopy and imaging at low field.

RESULTS

The SPION relaxivity was substantially greater at low field for H, increasing from 0.92 ± 0.06 mM s at 11.7T to 31.5 ± 1.8 mM s at 0.6 mT, and for Xe, which increased from 0.13 ± 0.03 mM s at 11.7T to 7.32 ± 0.71 mM s at 2.1 mT. The additional MR signal loss increased from 0.7% at 9.4T to 20.6 ± 4.2% at 0.6 mT for H and from -0.7 ± 3.4% at 9.4T to 12.7 ± 3.5% at 2.1 mT for Xe. Blood was found to depolarize Xe below 3T in a manner inversely proportional to the field strength. In vitro studies at 2.1 mT suggest Xe relaxation times below 5 s in blood dilutions as low as 0.4% volume.

CONCLUSION

SPIONs longitudinal relaxivity increases at low field both for H and Xe. The depolarization of xenon in blood, which is found to increase below 3T, effectively prevents in vivo dissolved-phase spectroscopy and imaging at low-field strengths.

摘要

目的

比较超顺磁氧化铁纳米粒子(SPIONs)对氙气和氢气 T1 的影响,并测量低磁场和高磁场下血液中氙气的弛豫率。

方法

在低磁场和高磁场下对含有不同 SPION 浓度的样品进行氙气和氢气 T1 弛豫率测量,同时使用成像技术比较这两种场强下获得的对比度。在可变场强下进行体内实验,以确定血液中氙气的去极化情况,并评估在低场进行体内溶解相光谱学和成像的可行性。

结果

低磁场下,氢气的 SPION 弛豫率显著增加,从 11.7T 时的 0.92±0.06mM·s-1增加到 0.6mT 时的 31.5±1.8mM·s-1,氙气的弛豫率也从 11.7T 时的 0.13±0.03mM·s-1增加到 2.1mT 时的 7.32±0.71mM·s-1。对于氢气,额外的 MR 信号损失从 9.4T 时的 0.7%增加到 0.6mT 时的 20.6±4.2%,对于氙气,从 9.4T 时的-0.7±3.4%增加到 2.1mT 时的 12.7±3.5%。研究发现,血液中的氙气在低于 3T 的磁场下发生去极化,这种去极化与磁场强度成反比。在 2.1mT 的体外研究中,血液稀释度低至 0.4%时,血液中的氙气弛豫时间可低于 5s。

结论

SPIONs 对氢气和氙气的纵向弛豫率在低磁场下均增加。血液中氙气的去极化作用,在低于 3T 的磁场下会增加,这有效地阻止了在低场强度下进行体内溶解相光谱学和成像。

相似文献

1
Enhanced Xe T relaxation in whole blood and in the presence of SPIONs at low magnetic field strengths.
Magn Reson Med. 2023 Jul;90(1):21-33. doi: 10.1002/mrm.29619. Epub 2023 Feb 16.
5
Relaxation and exchange dynamics of hyperpolarized 129Xe in human blood.
Magn Reson Med. 2015 Aug;74(2):303-11. doi: 10.1002/mrm.25417. Epub 2014 Aug 28.
6
Revealing a Third Dissolved-Phase Xenon-129 Resonance in Blood Caused by Hemoglobin Glycation.
Int J Mol Sci. 2023 Jul 11;24(14):11311. doi: 10.3390/ijms241411311.
9
Imaging gas-exchange lung function and brain tissue uptake of hyperpolarized Xe using sampling density-weighted MRSI.
Magn Reson Med. 2023 Jun;89(6):2217-2226. doi: 10.1002/mrm.29602. Epub 2023 Feb 6.
10
Diffusion-mediated Xe gas depolarization in magnetic field gradients during continuous-flow optical pumping.
J Magn Reson. 2016 Dec;273:124-129. doi: 10.1016/j.jmr.2016.10.014. Epub 2016 Oct 26.

引用本文的文献

1
Absolute thermometry of human brown adipose tissue by magnetic resonance with laser polarized Xe.
Commun Med (Lond). 2023 Oct 17;3(1):147. doi: 10.1038/s43856-023-00374-x.

本文引用的文献

1
Low-field MRI: Clinical promise and challenges.
J Magn Reson Imaging. 2023 Jan;57(1):25-44. doi: 10.1002/jmri.28408. Epub 2022 Sep 19.
3
An open-source, low-cost NMR spectrometer operating in the mT field regime.
J Magn Reson. 2021 Nov;332:107076. doi: 10.1016/j.jmr.2021.107076. Epub 2021 Sep 27.
4
Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI.
PLoS One. 2021 Aug 17;16(8):e0256252. doi: 10.1371/journal.pone.0256252. eCollection 2021.
5
One-pot synthesis of carboxymethyl-dextran coated iron oxide nanoparticles (CION) for preclinical fMRI and MRA applications.
Neuroimage. 2021 Sep;238:118213. doi: 10.1016/j.neuroimage.2021.118213. Epub 2021 Jun 9.
6
Magnetic Resonance Detection of Gas Microbubbles via HyperCEST: A Path Toward Dual Modality Contrast Agent.
Chemphyschem. 2021 Jun 16;22(12):1219-1228. doi: 10.1002/cphc.202100183. Epub 2021 May 19.
7
Characterisation of gas exchange in COPD with dissolved-phase hyperpolarised xenon-129 MRI.
Thorax. 2021 Feb;76(2):178-181. doi: 10.1136/thoraxjnl-2020-214924. Epub 2020 Nov 2.
8
Low-Field MRI of Stroke: Challenges and Opportunities.
J Magn Reson Imaging. 2021 Aug;54(2):372-390. doi: 10.1002/jmri.27324. Epub 2020 Aug 22.
9
High-sensitivity in vivo contrast for ultra-low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles.
Sci Adv. 2020 Jul 17;6(29):eabb0998. doi: 10.1126/sciadv.abb0998. eCollection 2020 Jul.
10
Dissolved hyperpolarized xenon-129 MRI in human kidneys.
Magn Reson Med. 2020 Jan;83(1):262-270. doi: 10.1002/mrm.27923. Epub 2019 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验