Suppr超能文献

磁共振检测气体微泡的超 CEST 方法:双模态对比剂的途径。

Magnetic Resonance Detection of Gas Microbubbles via HyperCEST: A Path Toward Dual Modality Contrast Agent.

机构信息

Department of Physics & Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Chemphyschem. 2021 Jun 16;22(12):1219-1228. doi: 10.1002/cphc.202100183. Epub 2021 May 19.

Abstract

Gas microbubbles are an established clinical ultrasound contrast agent. They could also become a powerful magnetic resonance (MR) intravascular contrast agent, but their low susceptibility-induced contrast requires high circulating concentrations or the addition of exogenous paramagnetic nanoparticles for MR detection. In order to detect clinical in vivo concentrations of raw microbubbles via MR, an alternative detection scheme must be used. HyperCEST is an NMR technique capable of indirectly detecting signals from very dilute molecules (concentrations well below the NMR detection threshold) that exchange hyperpolarized Xe. Here, we use quantitative hyperCEST to show that microbubbles are very efficient hyperCEST agents. They can accommodate and saturate millions of Xe atoms at a time, allowing for their indirect detection at concentrations as low as 10 femtomolar. The increased MR sensitivity to microbubbles achieved via hyperCEST can bridge the gap for microbubbles to become a dual modality contrast agent.

摘要

气体微泡是一种成熟的临床超声造影剂。它们也可能成为一种强大的磁共振(MR)血管内造影剂,但它们的低顺磁性诱导对比度需要高循环浓度或添加外源性顺磁纳米粒子来进行 MR 检测。为了通过 MR 检测临床体内的原始微泡浓度,必须使用替代的检测方案。HyperCEST 是一种能够间接检测来自非常稀释的分子(浓度远低于 NMR 检测阈值)的信号的 NMR 技术,这些分子可以交换超极化氙气。在这里,我们使用定量 HyperCEST 表明微泡是非常有效的 HyperCEST 试剂。它们可以一次容纳和饱和数百万个氙原子,从而可以在低至 10 飞摩尔的浓度下对其进行间接检测。通过 HyperCEST 实现的对微泡的增强的 MR 灵敏度可以弥合微泡成为双重模式造影剂的差距。

相似文献

1
Magnetic Resonance Detection of Gas Microbubbles via HyperCEST: A Path Toward Dual Modality Contrast Agent.
Chemphyschem. 2021 Jun 16;22(12):1219-1228. doi: 10.1002/cphc.202100183. Epub 2021 May 19.
2
Low-boiling Point Perfluorocarbon Nanodroplets as Dual-Phase Dual-Modality MR/US Contrast Agent.
Chemphyschem. 2022 Dec 16;23(24):e202200438. doi: 10.1002/cphc.202200438. Epub 2022 Sep 29.
3
In vivo hyperCEST imaging: Experimental considerations for a reliable contrast.
Magn Reson Med. 2022 Mar;87(3):1480-1489. doi: 10.1002/mrm.29032. Epub 2021 Oct 2.
4
R3-Noria-methanesulfonate: A Molecular Cage with Superior Hyperpolarized Xenon-129 MRI Contrast.
ACS Sens. 2023 Dec 22;8(12):4707-4715. doi: 10.1021/acssensors.3c01791. Epub 2023 Dec 8.
5
9
Molecular Sensing with Hyperpolarized (129) Xe Using Switchable Chemical Exchange Relaxation Transfer.
Chemphyschem. 2015 Aug 3;16(11):2294-8. doi: 10.1002/cphc.201500367. Epub 2015 Jun 17.
10
HyperCEST detection of cucurbit[6]uril in whole blood using an ultrashort saturation Pre-pulse train.
Contrast Media Mol Imaging. 2016 Jul;11(4):285-90. doi: 10.1002/cmmi.1690. Epub 2016 Apr 13.

引用本文的文献

2
Enhanced Xe T relaxation in whole blood and in the presence of SPIONs at low magnetic field strengths.
Magn Reson Med. 2023 Jul;90(1):21-33. doi: 10.1002/mrm.29619. Epub 2023 Feb 16.
3
Low-boiling Point Perfluorocarbon Nanodroplets as Dual-Phase Dual-Modality MR/US Contrast Agent.
Chemphyschem. 2022 Dec 16;23(24):e202200438. doi: 10.1002/cphc.202200438. Epub 2022 Sep 29.
4
In vivo hyperCEST imaging: Experimental considerations for a reliable contrast.
Magn Reson Med. 2022 Mar;87(3):1480-1489. doi: 10.1002/mrm.29032. Epub 2021 Oct 2.

本文引用的文献

1
Decacationic Pillar[5]arene: A New Scaffold for the Development of Xe MRI Imaging Agents.
ACS Omega. 2020 Oct 20;5(43):27783-27788. doi: 10.1021/acsomega.0c02565. eCollection 2020 Nov 3.
2
Phospholipid Oxygen Microbubbles for Image-Guided Therapy.
Nanotheranostics. 2020 Feb 28;4(2):83-90. doi: 10.7150/ntno.43808. eCollection 2020.
3
A Sample Preparation Technique Using Biocompatible Composites for Biomedical Applications.
Molecules. 2019 Apr 3;24(7):1321. doi: 10.3390/molecules24071321.
4
Recombinantly Expressed Gas Vesicles as Nanoscale Contrast Agents for Ultrasound and Hyperpolarized MRI.
AIChE J. 2018 Aug;64(8):2927-2933. doi: 10.1002/aic.16138. Epub 2018 Feb 23.
5
Protein Nanostructures Produce Self-Adjusting Hyperpolarized Magnetic Resonance Imaging Contrast through Physical Gas Partitioning.
ACS Nano. 2018 Nov 27;12(11):10939-10948. doi: 10.1021/acsnano.8b04222. Epub 2018 Sep 17.
7
Accelerated Clearance of Ultrasound Contrast Agents Containing Polyethylene Glycol is Associated with the Generation of Anti-Polyethylene Glycol Antibodies.
Ultrasound Med Biol. 2018 Jun;44(6):1266-1280. doi: 10.1016/j.ultrasmedbio.2018.02.006. Epub 2018 Mar 27.
8
Quantitative biosensor detection by chemically exchanging hyperpolarized Xe.
Phys Chem Chem Phys. 2018 Jan 17;20(3):1800-1808. doi: 10.1039/c7cp07051a.
9
Bloch Equations for Proton Exchange Reactions in an Aqueous Solution.
Concepts Magn Reson Part A Bridg Educ Res. 2016 May;45A(3). doi: 10.1002/cmr.a.21397. Epub 2017 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验