Suppr超能文献

使用深度神经网络从二维观测重建兴奋介质中的三维卷曲波。

Reconstruction of three-dimensional scroll waves in excitable media from two-dimensional observations using deep neural networks.

机构信息

Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158, USA.

Department of Computer Science, University of California, Berkeley, Berkeley, California 94720, USA.

出版信息

Phys Rev E. 2023 Jan;107(1-1):014221. doi: 10.1103/PhysRevE.107.014221.

Abstract

Scroll wave dynamics are thought to underlie life-threatening ventricular fibrillation. However, direct observations of three-dimensional electrical scroll waves remain elusive, as there is no direct way to measure action potential wave patterns transmurally throughout the thick ventricular heart muscle. Here we study whether it is possible to reconstruct simulated scroll waves and scroll wave chaos using deep learning. We trained encoding-decoding convolutional neural networks to predict three-dimensional scroll wave dynamics inside bulk-shaped excitable media from two-dimensional observations of the wave dynamics on the bulk's surface. We tested whether observations from one or two opposing surfaces would be sufficient and whether transparency or measurements of surface deformations enhances the reconstruction. Further, we evaluated the approach's robustness against noise and tested the feasibility of predicting the bulk's thickness. We distinguished isotropic and anisotropic, as well as opaque and transparent, excitable media as models for cardiac tissue and the Belousov-Zhabotinsky chemical reaction, respectively. While we demonstrate that it is possible to reconstruct three-dimensional scroll wave dynamics, we also show that it is challenging to reconstruct complicated scroll wave chaos and that prediction outcomes depend on various factors such as transparency, anisotropy, and ultimately the thickness of the medium compared to the size of the scroll waves. In particular, we found that anisotropy provides crucial information for neural networks to decode depth, which facilitates the reconstructions. In the future, deep neural networks could be used to visualize intramural action potential wave patterns from epi- or endocardial measurements.

摘要

滚动波动力学被认为是导致危及生命的心室颤动的基础。然而,由于没有直接的方法可以在整个厚心室心肌中测量动作电位波模式的横向传输,因此仍然难以直接观察到三维电滚动波。在这里,我们研究是否可以使用深度学习来重建模拟的滚动波和滚动波混沌。我们训练了编码-解码卷积神经网络,以便从体状可兴奋介质表面的波动力学二维观察中预测体状内部的三维滚动波动力学。我们测试了观察一个或两个相对面是否足够,以及透明度或表面变形的测量是否会增强重建。此外,我们评估了该方法对噪声的鲁棒性,并测试了预测体状厚度的可行性。我们将各向同性和各向异性以及不透明和透明的可兴奋介质分别作为心脏组织和 Belousov-Zhabotinsky 化学反应的模型,以区分它们。虽然我们证明了重建三维滚动波动力学是可能的,但我们也表明,重建复杂的滚动波混沌具有挑战性,并且预测结果取决于各种因素,例如透明度、各向异性以及与滚动波大小相比介质的最终厚度。特别是,我们发现各向异性为神经网络提供了解码深度的关键信息,这有助于进行重建。在未来,深度神经网络可以用于从心外膜或心内膜测量中可视化壁内动作电位波模式。

相似文献

本文引用的文献

1
KHz-rate volumetric voltage imaging of the whole Zebrafish heart.斑马鱼整个心脏的千赫兹速率容积电压成像
Biophys Rep (N Y). 2022 Feb 3;2(1):100046. doi: 10.1016/j.bpr.2022.100046. eCollection 2022 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验