Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea.
College of Natural Sciences, Institute of Applied Physics, Seoul National University, Seoul 08826, South Korea.
J Phys Chem Lett. 2023 Mar 2;14(8):2078-2086. doi: 10.1021/acs.jpclett.3c00174. Epub 2023 Feb 17.
Deciphering the structural evolution in irreversibly densified oxide glasses is crucial for fabricating functional glasses with tunable properties and elucidating the nature of pressure-induced anomalous plastic deformation in glasses. High-resolution NMR spectroscopy quantifies atomic-level structural information on densified glasses; however, its application is limited to the low-pressure range due to technical challenges. Here, we report the first high-resolution NMR spectra of oxide glass compressed by diamond anvil cells at room temperature, extending the pressure record of such studies from 24 to 65 GPa. The results constrain the densification path through coordination transformation of Al cations. Based on a statistical thermodynamic model, the stepwise changes in the Al fractions of oxide glasses and the effects of network polymerization on the densification paths are quantified. These results extend the knowledge on densification of the previously unattainable pressure conditions and contribute to understanding the origin of mechanical strengthening of the glasses.
解析不可还原致密化氧化物玻璃中的结构演变,对于制备具有可调性能的功能玻璃以及阐明玻璃中压力诱导异常塑性变形的本质至关重要。高分辨率 NMR 光谱可定量测定致密化玻璃的原子级结构信息;然而,由于技术挑战,其应用仅限于低压范围。在这里,我们报道了在室温下通过金刚石压腔压缩的氧化物玻璃的第一个高分辨率 NMR 光谱,将此类研究的压力记录从 24 GPa 扩展到 65 GPa。结果通过 Al 阳离子的配位转变来约束致密化路径。基于统计热力学模型,定量了氧化物玻璃中 Al 分数的逐步变化以及网络聚合对致密化路径的影响。这些结果扩展了对以前无法达到的压力条件下致密化的认识,并有助于理解玻璃机械强化的起源。