Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743, Jena, Germany.
Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
Adv Mater. 2022 Apr;34(14):e2109029. doi: 10.1002/adma.202109029. Epub 2022 Feb 25.
Glasses are materials that lack a crystalline microstructure and long-range atomic order. Instead, they feature heterogeneity and disorder on superstructural scales, which have profound consequences for their elastic response, material strength, fracture toughness, and the characteristics of dynamic fracture. These structure-property relations present a rich field of study in fundamental glass physics and are also becoming increasingly important in the design of modern materials with improved mechanical performance. A first step in this direction involves glass-like materials that retain optical transparency and the haptics of classical glass products, while overcoming the limitations of brittleness. Among these, novel types of oxide glasses, hybrid glasses, phase-separated glasses, and bioinspired glass-polymer composites hold significant promise. Such materials are designed from the bottom-up, building on structure-property relations, modeling of stresses and strains at relevant length scales, and machine learning predictions. Their fabrication requires a more scientifically driven approach to materials design and processing, building on the physics of structural disorder and its consequences for structural rearrangements, defect initiation, and dynamic fracture in response to mechanical load. In this article, a perspective is provided on this highly interdisciplinary field of research in terms of its most recent challenges and opportunities.
眼镜是缺乏结晶微观结构和长程原子有序性的材料。相反,它们在超结构尺度上具有异质性和无序性,这对它们的弹性响应、材料强度、断裂韧性和动态断裂特性有深远的影响。这些结构-性能关系在基础玻璃物理学中是一个丰富的研究领域,在设计具有改善机械性能的现代材料方面也变得越来越重要。朝这个方向迈出的第一步涉及到保持光学透明度和经典玻璃制品触感的玻璃状材料,同时克服脆性的局限性。在这些材料中,新型氧化物玻璃、杂化玻璃、相分离玻璃和受生物启发的玻璃-聚合物复合材料具有很大的潜力。这些材料是从底层设计的,基于结构-性能关系、相关长度尺度上的应力和应变建模以及机器学习预测。它们的制造需要更具科学性的材料设计和加工方法,基于结构无序的物理及其对结构重排、缺陷引发和机械载荷响应下动态断裂的影响。本文从最近的挑战和机遇的角度来看待这个高度跨学科的研究领域。