Cancer and Stem Cell Epigenetics Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
Animal Model and Genotyping Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
Cancer Res. 2023 Apr 14;83(8):1280-1298. doi: 10.1158/0008-5472.CAN-22-2525.
Understanding functional interactions between cancer mutations is an attractive strategy for discovering unappreciated cancer pathways and developing new combination therapies to improve personalized treatment. However, distinguishing driver gene pairs from passenger pairs remains challenging. Here, we designed an integrated omics approach to identify driver gene pairs by leveraging genetic interaction analyses of top mutated breast cancer genes and the proteomics interactome data of their encoded proteins. This approach identified that PIK3CA oncogenic gain-of-function (GOF) and CBFB loss-of-function (LOF) mutations cooperate to promote breast tumor progression in both mice and humans. The transcription factor CBFB localized to mitochondria and moonlighted in translating the mitochondrial genome. Mechanistically, CBFB enhanced the binding of mitochondrial mRNAs to TUFM, a mitochondrial translation elongation factor. Independent of mutant PI3K, mitochondrial translation defects caused by CBFB LOF led to multiple metabolic reprogramming events, including defective oxidative phosphorylation, the Warburg effect, and autophagy/mitophagy addiction. Furthermore, autophagy and PI3K inhibitors synergistically killed breast cancer cells and impaired the growth of breast tumors, including patient-derived xenografts carrying CBFB LOF and PIK3CA GOF mutations. Thus, our study offers mechanistic insights into the functional interaction between mutant PI3K and mitochondrial translation dysregulation in breast cancer progression and provides a strong preclinical rationale for combining autophagy and PI3K inhibitors in precision medicine for breast cancer.
CBFB-regulated mitochondrial translation is a regulatory step in breast cancer metabolism and synergizes with mutant PI3K in breast cancer progression.
理解癌症突变之间的功能相互作用是发现未被重视的癌症途径和开发新的联合疗法以改善个性化治疗的一种有吸引力的策略。然而,区分驱动基因对和乘客基因对仍然具有挑战性。在这里,我们设计了一种综合的组学方法,通过利用乳腺癌中最常见突变基因的遗传相互作用分析和其编码蛋白的蛋白质组学相互作用数据来识别驱动基因对。该方法鉴定出 PIK3CA 致癌获得性功能(GOF)和 CBFB 失功能(LOF)突变在小鼠和人类中共同促进乳腺癌肿瘤的进展。转录因子 CBFB 定位于线粒体,并在翻译线粒体基因组方面发挥作用。从机制上讲,CBFB 增强了线粒体 mRNA 与 TUFM(一种线粒体翻译延伸因子)的结合。独立于突变的 PI3K,CBFB LOF 引起的线粒体翻译缺陷导致多种代谢重编程事件,包括氧化磷酸化缺陷、沃伯格效应和自噬/线粒体自噬成瘾。此外,自噬和 PI3K 抑制剂协同杀死乳腺癌细胞并损害乳腺癌肿瘤的生长,包括携带 CBFB LOF 和 PIK3CA GOF 突变的患者来源异种移植物。因此,我们的研究提供了乳腺癌进展中突变的 PI3K 和线粒体翻译失调之间功能相互作用的机制见解,并为在乳腺癌精准医学中联合自噬和 PI3K 抑制剂提供了强有力的临床前依据。
CBFB 调节的线粒体翻译是乳腺癌代谢中的一个调节步骤,与乳腺癌进展中的突变的 PI3K 协同作用。