More Sharlee L, Miller Julie V, Thornton Stephanie A, Chan Kathy, Barber Timothy R, Unice Kenneth M
Stantec (ChemRisk), Portland, OR, United States of America.
Stantec (ChemRisk), Pittsburgh, PA, United States of America.
Sci Total Environ. 2023 May 20;874:162305. doi: 10.1016/j.scitotenv.2023.162305. Epub 2023 Feb 18.
Tire and road wear particles (TRWP) are produced by abrasion at the interface of the pavement and tread surface and contain tread rubber with road mineral encrustations. Quantitative thermoanalytical methods capable of estimating TRWP concentrations are needed to assess the prevalence and environmental fate of these particles. However, the presence of complex organic constituents in sediment and other environmental samples presents a challenge to the reliable determination of TRWP concentrations using current pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) methodologies. We are unaware of a published study evaluating pretreatment and other method refinements for microfurnace Py-GC-MS analysis of the elastomeric polymers in TRWP including polymer-specific deuterated internal standards as specified in ISO Technical Specification (ISO/TS) 20593:2017 and ISO/TS 21396:2017. Thus, potential method refinements were evaluated for microfurnace Py-GC-MS, including chromatography parameter modification, chemical pretreatment, and thermal desorption for cryogenically-milled tire tread (CMTT) samples in an artificial sediment matrix and a sediment field sample. The tire tread dimer markers used for quantification were 4-vinylcyclohexene (4-VCH), a marker for styrene-butadiene rubber (SBR) and butadiene rubber (BR), 4-phenylcyclohexene (4-PCH), a marker for SBR, and dipentene (DP), a marker for natural rubber (NR) or isoprene. The resultant modifications included optimization of GC temperature and mass analyzer settings, along with sample pretreatment with potassium hydroxide (KOH) and thermal desorption. Peak resolution was improved while minimizing matrix interferences with overall accuracy and precision consistent with those typically observed in environmental sample analysis. The initial method detection limit for an artificial sediment matrix was approximately 180 mg/kg for a 10 mg sediment sample. A sediment and a retained suspended solids sample were also analyzed to illustrate the applicability of microfurnace Py-GC-MS towards complex environmental sample analysis. These refinements should help encourage the adoption of pyrolysis techniques for mass-based measurements of TRWP in environmental samples both near and distant from roadways.
轮胎和道路磨损颗粒(TRWP)是由路面与胎面表面的界面磨损产生的,包含带有道路矿物质结壳的胎面橡胶。需要能够估算TRWP浓度的定量热分析方法来评估这些颗粒的普遍性和环境归宿。然而,沉积物和其他环境样品中复杂有机成分的存在对使用当前的热解气相色谱 - 质谱联用(Py - GC - MS)方法可靠测定TRWP浓度提出了挑战。我们尚未知晓有已发表的研究评估用于TRWP中弹性体聚合物微炉Py - GC - MS分析的预处理及其他方法改进,包括ISO技术规范(ISO/TS)20593:2017和ISO/TS 21396:2017中规定的聚合物特定氘代内标。因此,针对微炉Py - GC - MS评估了潜在的方法改进,包括色谱参数修改、化学预处理以及对人工沉积物基质和沉积物现场样品中低温研磨轮胎胎面(CMTT)样品的热解吸。用于定量的轮胎胎面二聚体标记物为4 - 乙烯基环己烯(4 - VCH),它是丁苯橡胶(SBR)和丁二烯橡胶(BR)的标记物;4 - 苯基环己烯(4 - PCH),它是SBR的标记物;以及双戊烯(DP),它是天然橡胶(NR)或异戊二烯的标记物。由此产生的改进包括优化气相色谱温度和质量分析器设置,以及用氢氧化钾(KOH)进行样品预处理和热解吸。峰分辨率得到了提高,同时将基质干扰降至最低,总体准确度和精密度与环境样品分析中通常观察到的一致。对于10mg沉积物样品,人工沉积物基质的初始方法检测限约为180mg/kg。还分析了一个沉积物样品和一个保留的悬浮固体样品,以说明微炉Py - GC - MS对复杂环境样品分析的适用性。这些改进应有助于鼓励采用热解技术对道路附近和远处环境样品中的TRWP进行基于质量的测量。