Suppr超能文献

基于噻吩-咪唑盐的分子的高效侧链工程以提高有机太阳能电池的光电性能:DFT 方法。

Efficient side-chain engineering of thieno-imidazole salt-based molecule to boost the optoelectronic attributes of organic solar cells: A DFT approach.

机构信息

Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan.

Department of Mechanical Engineering, College of Engineering, Northern Border University, Arar, Saudi Arabia.

出版信息

J Mol Graph Model. 2023 Jun;121:108428. doi: 10.1016/j.jmgm.2023.108428. Epub 2023 Feb 13.

Abstract

This study focused on modeling and density functional theory (DFT) analysis of reference (AI1) and designed structures (AI11-AI15), based on the thieno-imidazole core, in order to create profitable candidates for solar cells. All the optoelectronic properties of the molecular geometries were computed using DFT and time dependent-DFT approaches. The influence of terminal acceptors on the bandgaps, absorption, hole and electron mobilities, charge transfer capabilities, fill factor, dipole moment, etc. Of the recently designed structures (AI11-AI15), as well as reference (AI1), were evaluated. Optoelectronics and chemical parameters of newly architecture geometries were shown to be superior to the cited molecule. The FMOs and DOS graphs also demonstrated that the linked acceptors remarkably improved the dispersion of charge density in the geometries under study, particularly in AI11 and AI14. Calculated values of binding energy and chemical potential confirmed the thermal stability of the molecules. All the derived geometries surpassed the AI1 (Reference) molecule in terms of maximum absorbance ranging from 492 to 532 nm (in chlorobenzene solvent) and a narrower bandgap ranging from 1.76 to 1.99eV. AI15 had the lowest exciton dissociation energy of 0.22eV as well as lowest electrons and hole dissociation energies, while AI11 and AI14 showed highest VOC, fill factor, power conversion efficiency (PCE), IP and EA (owing to presence of strong electron pulling cyano (CN) moieties at their acceptor portions and extended conjugation) than all the examined molecules, implying that they could be used to build elite solar cells with enhanced photovoltaic attributes.

摘要

这项研究侧重于基于噻吩-咪唑核心的参考(AI1)和设计结构(AI11-AI15)的建模和密度泛函理论(DFT)分析,以创建适用于太阳能电池的有前途的候选物。使用 DFT 和时间相关-DFT 方法计算了所有分子几何形状的光电性质。评估了末端受体对带隙、吸收、空穴和电子迁移率、电荷转移能力、填充因子、偶极矩等的影响。新设计的结构(AI11-AI15)以及参考(AI1)。新架构几何形状的光电和化学参数显示优于引用分子。FMO 和 DOS 图还表明,连接的受体显着改善了研究中几何形状的电荷密度分布,特别是在 AI11 和 AI14 中。结合能和化学势的计算值证实了分子的热稳定性。所有推导的几何形状在最大吸收方面都超过了 AI1(参考)分子,范围从 492 到 532nm(在氯苯溶剂中),并且带隙更窄,范围从 1.76 到 1.99eV。AI15 具有最低的激子离解能 0.22eV 以及最低的电子和空穴离解能,而 AI11 和 AI14 显示出最高的 VOC、填充因子、功率转换效率(PCE)、IP 和 EA(由于其受体部分存在强电子拉氰基(CN)部分和扩展的共轭)高于所有检查的分子,这意味着它们可以用于构建具有增强光伏特性的精英太阳能电池。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验