Suppr超能文献

人工智能算法在心力衰竭患者一年死亡率预测中的临床应用。

Clinical application of artificial intelligence algorithm for prediction of one-year mortality in heart failure patients.

机构信息

Department of Cardiovascular Medicine, National Cerebral Cardiovascular Center, Suita, 564-8565, Japan.

Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.

出版信息

Heart Vessels. 2023 Jun;38(6):785-792. doi: 10.1007/s00380-023-02237-w. Epub 2023 Feb 20.

Abstract

Risk prediction for heart failure (HF) using machine learning methods (MLM) has not yet been established at practical application levels in clinical settings. This study aimed to create a new risk prediction model for HF with a minimum number of predictor variables using MLM. We used two datasets of hospitalized HF patients: retrospective data for creating the model and prospectively registered data for model validation. Critical clinical events (CCEs) were defined as death or LV assist device implantation within 1 year from the discharge date. We randomly divided the retrospective data into training and testing datasets and created a risk prediction model based on the training dataset (MLM-risk model). The prediction model was validated using both the testing dataset and the prospectively registered data. Finally, we compared predictive power with published conventional risk models. In the patients with HF (n = 987), CCEs occurred in 142 patients. In the testing dataset, the substantial predictive power of the MLM-risk model was obtained (AUC = 0.87). We generated the model using 15 variables. Our MLM-risk model showed superior predictive power in the prospective study compared to conventional risk models such as the Seattle Heart Failure Model (c-statistics: 0.86 vs. 0.68, p < 0.05). Notably, the model with an input variable number (n = 5) has comparable predictive power for CCE with the model (variable number = 15). This study developed and validated a model with minimized variables to predict mortality more accurately in patients with HF, using a MLM, than the existing risk scores.

摘要

使用机器学习方法(MLM)预测心力衰竭(HF)的风险尚未在临床环境的实际应用水平上建立。本研究旨在使用 MLM 创建一个具有最少预测变量的新型 HF 风险预测模型。我们使用了两组住院 HF 患者的数据:用于创建模型的回顾性数据和用于模型验证的前瞻性注册数据。关键临床事件(CCE)定义为出院后 1 年内死亡或植入左心室辅助装置。我们将回顾性数据随机分为训练数据集和测试数据集,并基于训练数据集创建风险预测模型(MLM-风险模型)。使用测试数据集和前瞻性注册数据验证预测模型。最后,我们将预测能力与已发表的传统风险模型进行了比较。在 HF 患者(n=987)中,有 142 例患者发生 CCE。在测试数据集中,MLM-风险模型具有显著的预测能力(AUC=0.87)。我们使用了 15 个变量来生成模型。与西雅图心力衰竭模型等传统风险模型相比,我们的 MLM-风险模型在前瞻性研究中显示出更好的预测能力(c 统计量:0.86 对 0.68,p<0.05)。值得注意的是,输入变量数量(n=5)较少的模型与具有 15 个变量的模型相比,对 CCE 的预测能力相当。本研究使用 MLM 开发并验证了一个具有最小变量的模型,与现有风险评分相比,该模型能更准确地预测 HF 患者的死亡率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验