Suppr超能文献

机器学习在心力衰竭人群管理中的应用。

A Machine Learning Approach to Management of Heart Failure Populations.

机构信息

Department of Translational Data Science and Informatics, Geisinger, Danville, Pennsylvania.

Heart Institute, Geisinger, Danville, Pennsylvania.

出版信息

JACC Heart Fail. 2020 Jul;8(7):578-587. doi: 10.1016/j.jchf.2020.01.012. Epub 2020 May 6.

Abstract

BACKGROUND

Heart failure is a prevalent, costly disease for which new value-based payment models demand optimized population management strategies.

OBJECTIVES

This study sought to generate a strategy for managing populations of patients with heart failure by leveraging large clinical datasets and machine learning.

METHODS

Geisinger electronic health record data were used to train machine learning models to predict 1-year all-cause mortality in 26,971 patients with heart failure who underwent 276,819 clinical episodes. There were 26 clinical variables (demographics, laboratory test results, medications), 90 diagnostic codes, 41 electrocardiogram measurements and patterns, 44 echocardiographic measurements, and 8 evidence-based "care gaps": flu vaccine, blood pressure of <130/80 mm Hg, A of <8%, cardiac resynchronization therapy, and active medications (active angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker/angiotensin receptor-neprilysin inhibitor, aldosterone receptor antagonist, hydralazine, and evidence-based beta-blocker) were collected. Care gaps represented actionable variables for which associations with all-cause mortality were modeled from retrospective data and then used to predict the benefit of prospective interventions in 13,238 currently living patients.

RESULTS

Machine learning models achieved areas under the receiver-operating characteristic curve (AUCs) of 0.74 to 0.77 in a split-by-year training/test scheme, with the nonlinear XGBoost model (AUC: 0.77) outperforming linear logistic regression (AUC: 0.74). Out of 13,238 currently living patients, 2,844 were predicted to die within a year, and closing all care gaps was predicted to save 231 of these lives. Prioritizing patients for intervention by using the predicted reduction in 1-year mortality risk outperformed all other priority rankings (e.g., random selection or Seattle Heart Failure risk score).

CONCLUSIONS

Machine learning can be used to priority-rank patients most likely to benefit from interventions to optimize evidence-based therapies. This approach may prove useful for optimizing heart failure population health management teams within value-based payment models.

摘要

背景

心力衰竭是一种普遍且昂贵的疾病,新的基于价值的支付模式要求优化人群管理策略。

目的

本研究旨在通过利用大型临床数据集和机器学习为心力衰竭患者人群管理生成策略。

方法

使用 Geisinger 电子健康记录数据来训练机器学习模型,以预测 26971 例心力衰竭患者的 276819 例临床发作中 1 年全因死亡率。共有 26 个临床变量(人口统计学、实验室检查结果、药物)、90 个诊断代码、41 个心电图测量值和模式、44 个超声心动图测量值以及 8 个基于证据的“护理差距”:流感疫苗、血压<130/80mmHg、A<8%、心脏再同步治疗和活性药物(活性血管紧张素转换酶抑制剂/血管紧张素 II 受体阻滞剂/血管紧张素受体-脑啡肽酶抑制剂、醛固酮受体拮抗剂、肼屈嗪和基于证据的β受体阻滞剂)。护理差距代表可采取行动的变量,从回顾性数据中对其与全因死亡率的相关性进行建模,然后用于预测 13238 名目前在世患者前瞻性干预的获益。

结果

在按年份拆分的训练/测试方案中,机器学习模型的受试者工作特征曲线下面积(AUCs)为 0.74 至 0.77,非线性 XGBoost 模型(AUC:0.77)优于线性逻辑回归(AUC:0.74)。在 13238 名目前在世的患者中,预测有 2844 人在一年内死亡,而关闭所有护理差距预计将挽救其中 231 人的生命。通过使用预测的 1 年死亡率降低来对患者进行干预优先级排序,优于其他所有优先级排序(例如,随机选择或西雅图心力衰竭风险评分)。

结论

机器学习可用于对最有可能从干预中获益的患者进行优先级排序,以优化基于证据的治疗方法。这种方法可能有助于在基于价值的支付模式下优化心力衰竭人群健康管理团队。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验