Lv Haichen, Yang Xiaolei, Wang Bingyi, Wang Shaobo, Du Xiaoyan, Tan Qian, Hao Zhujing, Liu Ying, Yan Jun, Xia Yunlong
Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
Medical Department, Yidu Cloud (Beijing) Technology Co Ltd, Beijing, China.
J Med Internet Res. 2021 Apr 19;23(4):e24996. doi: 10.2196/24996.
With the prevalence of cardiovascular diseases increasing worldwide, early prediction and accurate assessment of heart failure (HF) risk are crucial to meet the clinical demand.
Our study objective was to develop machine learning (ML) models based on real-world electronic health records to predict 1-year in-hospital mortality, use of positive inotropic agents, and 1-year all-cause readmission rate.
For this single-center study, we recruited patients with newly diagnosed HF hospitalized between December 2010 and August 2018 at the First Affiliated Hospital of Dalian Medical University (Liaoning Province, China). The models were constructed for a population set (90:10 split of data set into training and test sets) using 79 variables during the first hospitalization. Logistic regression, support vector machine, artificial neural network, random forest, and extreme gradient boosting models were investigated for outcome predictions.
Of the 13,602 patients with HF enrolled in the study, 537 (3.95%) died within 1 year and 2779 patients (20.43%) had a history of use of positive inotropic agents. ML algorithms improved the performance of predictive models for 1-year in-hospital mortality (areas under the curve [AUCs] 0.92-1.00), use of positive inotropic medication (AUCs 0.85-0.96), and 1-year readmission rates (AUCs 0.63-0.96). A decision tree of mortality risk was created and stratified by single variables at levels of high-sensitivity cardiac troponin I (<0.068 μg/L), followed by percentage of lymphocytes (<14.688%) and neutrophil count (4.870×10/L).
ML techniques based on a large scale of clinical variables can improve outcome predictions for patients with HF. The mortality decision tree may contribute to guiding better clinical risk assessment and decision making.
随着全球心血管疾病患病率的上升,心力衰竭(HF)风险的早期预测和准确评估对于满足临床需求至关重要。
我们的研究目的是基于真实世界的电子健康记录开发机器学习(ML)模型,以预测1年住院死亡率、正性肌力药物的使用情况以及1年全因再入院率。
在这项单中心研究中,我们招募了2010年12月至2018年8月期间在大连医科大学附属第一医院(中国辽宁省)住院的新诊断HF患者。在首次住院期间,使用79个变量为一个总体集(将数据集按90:10划分为训练集和测试集)构建模型。研究了逻辑回归、支持向量机、人工神经网络、随机森林和极端梯度提升模型用于结局预测。
在纳入研究的13602例HF患者中,537例(3.95%)在1年内死亡,2779例患者(20.43%)有使用正性肌力药物的病史。ML算法提高了预测模型对1年住院死亡率(曲线下面积[AUCs]为0.92 - 1.00)、正性肌力药物使用情况(AUCs为0.85 - 0.96)和1年再入院率(AUCs为0.63 - 0.96)的预测性能。创建了一个死亡风险决策树,并按高敏心肌肌钙蛋白I(<0.068μg/L)、淋巴细胞百分比(<14.688%)和中性粒细胞计数(4.870×10/L)等单变量进行分层。
基于大量临床变量的ML技术可以改善HF患者的结局预测。死亡率决策树可能有助于指导更好的临床风险评估和决策制定。