Zhao Zhiguo, Wang Yao
School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
Acc Chem Res. 2023 Mar 7;56(5):608-621. doi: 10.1021/acs.accounts.3c00009. Epub 2023 Feb 20.
ConspectusThe exploration of new catalysis concepts and strategies to drive chemical reactions is of vital importance for the sustainable development of organic synthesis. Recently, chalcogen bonding catalysis has emerged as a new concept for organic synthesis and has been demonstrated to be an important synthetic tool capable of addressing elusive reactivity and selectivity issues. This Account describes our progress in the research field of chalcogen bonding catalysis, including (1) the discovery of phosphonium chalcogenide (PCH) as highly efficient chalcogen bonding catalyst; (2) the development of "chalcogen-chalcogen bonding catalysis" and "chalcogen···π bonding catalysis" modes; (3) the demonstration that chalcogen bonding catalysis with PCH can activate hydrocarbons to achieve cyclization and coupling reactions of alkenes; (4) the discovery of unusual results that chalcogen bonding catalysis with PCH can solve elusive reactivity and selectivity issues that are inaccessible by classic catalysis approaches; and (5) the elucidation of chalcogen bonding mechanisms.With PCH catalysts, we systematically studied their chalcogen bonding properties, the relationship between structure and catalysis, and their application in facilitating a diverse array of reactions. Enabled by chalcogen-chalcogen bonding catalysis, an efficient assembly reaction of three molecules of β-ketoaldehyde and one indole derivative in a single operation was realized, delivering heterocycles with a newly constructed seven-membered ring. In addition, a Se···O bonding catalysis approach achieved an efficient synthesis of calix[4]pyrroles. We developed a "dual chalcogen bonding catalysis" strategy to solve reactivity and selectivity issues in the Rauhut-Currier-type reactions and related cascade cyclizations, thus shifting conventionally covalent Lewis base catalysis to a cooperative Se···O bonding catalysis approach. This strategy enables the cyanosilylation of ketones to take place in the presence of a ppm-level amount of PCH catalyst loading. Furthermore, we established chalcogen···π bonding catalysis for catalytic transformation of alkenes. In the research field of supramolecular catalysis, the activation of hydrocarbons such as alkenes by weak interactions is a highly interesting unresolved topic. We showed that the Se···π bonding catalysis approach could efficiently activate alkenes to achieve both coupling and cyclization reactions. Chalcogen···π bonding catalysis with PCH catalysts is particularly highlighted by the capability of facilitating strong Lewis-acid inaccessible transformations, such as the controlled cross coupling of triple alkenes. Overall, this Account presents a panoramic view of our research on chalcogen bonding catalysis with PCH catalysts. The works described in this Account provide a significant platform to solve synthetic problems.
概述
探索驱动化学反应的新催化概念和策略对于有机合成的可持续发展至关重要。最近,硫族元素键催化已成为有机合成的一个新概念,并已被证明是一种重要的合成工具,能够解决难以捉摸的反应性和选择性问题。本综述介绍了我们在硫族元素键催化研究领域的进展,包括:(1)发现硫族化鏻(PCH)作为高效的硫族元素键催化剂;(2)开发“硫族元素-硫族元素键催化”和“硫族元素···π键催化”模式;(3)证明用PCH进行硫族元素键催化可以活化烃类以实现烯烃的环化和偶联反应;(4)发现用PCH进行硫族元素键催化能解决经典催化方法难以解决的难以捉摸的反应性和选择性问题这一不寻常结果;(5)阐明硫族元素键的作用机制。
使用PCH催化剂,我们系统地研究了它们的硫族元素键性质、结构与催化之间的关系以及它们在促进各种反应中的应用。通过硫族元素-硫族元素键催化,实现了在一次操作中β-酮醛的三个分子与一个吲哚衍生物的高效组装反应,生成具有新构建七元环的杂环化合物。此外,一种Se···O键催化方法实现了杯[4]吡咯的高效合成。我们开发了一种“双硫族元素键催化”策略来解决劳胡特-柯里尔型反应及相关级联环化反应中的反应性和选择性问题,从而将传统的共价路易斯碱催化转变为协同的Se···O键催化方法。该策略能使酮的氰基硅烷化反应在百万分之一级的PCH催化剂负载量下进行。此外,我们建立了用于烯烃催化转化的硫族元素···π键催化。在超分子催化研究领域,通过弱相互作用活化烯烃等烃类是一个非常有趣但尚未解决的课题。我们表明,Se···π键催化方法可以有效地活化烯烃以实现偶联和环化反应。用PCH催化剂进行硫族元素···π键催化尤其突出的是其促进强路易斯酸难以实现的转化的能力,例如三烯烃的可控交叉偶联反应。总体而言,本综述全面展示了我们用PCH催化剂进行硫族元素键催化的研究。本综述中描述的工作为解决合成问题提供了一个重要平台。