Suppr超能文献

活性氧响应性可转化三靶向丁苯酞纳米疗法通过重塑病理微环境精准治疗缺血性脑卒中

Reactive Oxygen Species-Responsive Transformable and Triple-Targeting Butylphthalide Nanotherapy for Precision Treatment of Ischemic Stroke by Normalizing the Pathological Microenvironment.

作者信息

Yang Qinghua, Pu Wendan, Hu Kaiyao, Hu Yi, Feng Zhiqiang, Cai Jiajun, Li Chenwen, Li Lanlan, Zhou Zhenhua, Zhang Jianxiang

机构信息

Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.

Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China.

出版信息

ACS Nano. 2023 Mar 14;17(5):4813-4833. doi: 10.1021/acsnano.2c11363. Epub 2023 Feb 20.

Abstract

High potency and safe therapies are still required for ischemic stroke, which is a leading cause of global death and disability. Herein, a reactive oxygen species (ROS)-responsive, transformable, and triple-targeting dl-3--butylphthalide (NBP) nanotherapy was developed for ischemic stroke. To this end, a ROS-responsive nanovehicle (OCN) was first constructed using a cyclodextrin-derived material, which showed considerably enhanced cellular uptake in brain endothelial cells due to notably reduced particle size, morphological transformation, and surface chemistry switching upon triggering via pathological signals. Compared to a nonresponsive nanovehicle, this ROS-responsive and transformable nanoplatform OCN exhibited a significantly higher brain accumulation in a mouse model of ischemic stroke, thereby affording notably potentiated therapeutic effects for the nanotherapy derived from NBP-containing OCN. For OCN decorated with a stroke-homing peptide (SHp), we found significantly increased transferrin receptor-mediated endocytosis, in addition to the previously recognized targeting capability to activated neurons. Consistently, the engineered transformable and triple-targeting nanoplatform, i.e., SHp-decorated OCN (SON), displayed a more efficient distribution in the injured brain in mice with ischemic stroke, showing considerable localization in endothelial cells and neurons. Furthermore, the finally formulated ROS-responsive transformable and triple-targeting nanotherapy (NBP-loaded SON) demonstrated highly potent neuroprotective activity in mice, which outperformed the SHp-deficient nanotherapy at a 5-fold higher dose. Mechanistically, our bioresponsive, transformable, and triple-targeting nanotherapy attenuated the ischemia/reperfusion-induced endothelial permeability and improved dendritic remodeling and synaptic plasticity of neurons in the injured brain tissue, thereby promoting much better functional recovery, which were achieved by efficiently enhancing NBP delivery to the ischemic brain tissue, targeting injured endothelial cells and activated neurons/microglial cells, and normalizing the pathological microenvironment. Moreover, preliminary studies indicated that the ROS-responsive NBP nanotherapy displayed a good safety profile. Consequently, the developed triple-targeting NBP nanotherapy with desirable targeting efficiency, spatiotemporally controlled drug release performance, and high translational potential holds great promise for precision therapy of ischemic stroke and other brain diseases.

摘要

缺血性中风是全球死亡和残疾的主要原因之一,仍然需要高效且安全的治疗方法。在此,我们开发了一种用于缺血性中风的活性氧(ROS)响应型、可转化且具有三重靶向性的丁苯酞(NBP)纳米疗法。为此,首先使用环糊精衍生材料构建了一种ROS响应型纳米载体(OCN),由于在病理信号触发时粒径显著减小、形态转变和表面化学性质改变,该纳米载体在脑内皮细胞中的细胞摄取显著增强。与无响应纳米载体相比,这种ROS响应型且可转化的纳米平台OCN在缺血性中风小鼠模型中表现出显著更高的脑内蓄积,从而为含NBP的OCN纳米疗法带来显著增强的治疗效果。对于用中风归巢肽(SHp)修饰的OCN,我们发现除了先前公认的对活化神经元的靶向能力外,转铁蛋白受体介导的内吞作用也显著增加。一致地,工程化的可转化且具有三重靶向性的纳米平台,即SHp修饰的OCN(SON),在缺血性中风小鼠的受损脑中显示出更有效的分布,在内皮细胞和神经元中具有相当程度的定位。此外,最终制备的ROS响应型可转化且具有三重靶向性的纳米疗法(负载NBP的SON)在小鼠中表现出高效的神经保护活性,在剂量高出5倍时其效果优于缺乏SHp的纳米疗法。从机制上讲,我们的生物响应型、可转化且具有三重靶向性的纳米疗法减轻了缺血/再灌注诱导的内皮通透性,改善了受损脑组织中神经元的树突重塑和突触可塑性,从而促进了更好的功能恢复,这是通过有效地增强NBP向缺血脑组织的递送、靶向受损内皮细胞和活化的神经元/小胶质细胞以及使病理微环境正常化来实现的。此外,初步研究表明ROS响应型NBP纳米疗法具有良好的安全性。因此,所开发的具有理想靶向效率、时空可控药物释放性能和高转化潜力的三重靶向NBP纳米疗法在缺血性中风和其他脑部疾病的精准治疗方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验