Suppr超能文献

Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of the in vitro glycated sites.

作者信息

Arai K, Maguchi S, Fujii S, Ishibashi H, Oikawa K, Taniguchi N

机构信息

Department of Pediatric Dentistry, Hokkaido University School of Dentistry, Sapporo, Japan.

出版信息

J Biol Chem. 1987 Dec 15;262(35):16969-72.

PMID:3680284
Abstract

The nonenzymatic glycosylation (glycation) of Cu-Zn-superoxide dismutase led to gradual inactivation of the enzyme (Arai, K. Iizuka, S., Tada, Y., Oikawa, K., and Taniguchi, N. (1987) Biochim. Biophys. Acta 924, 292-296). The purified superoxide dismutase from human erythrocytes comprises both glycated and nonglycated forms. The nonglycated Cu-Zn-superoxide dismutase was isolated by boronate affinity chromatography. Incubation of the nonglycated superoxide dismutase with D-[6-3H]glucose in vitro resulted in the gradual accumulation of radioactivity in the enzyme protein, and Schiff base adducts were trapped by NaBH4. The sites of glycation of the superoxide dismutase were identified by amino acid analysis after reverse-phase high performance liquid chromatography of the trypsin-treated peptides. Lysine residues, i.e. Lys3, Lys9, Lys30, Lys36, Lys122, and Lys128, were found to be glycated. Three of the glycated sites lie in Lys-Gly, two in Lys-Ala, and one in Lys-Val. The inactivation of the superoxide dismutase on the glycation is due mainly to the glycation of Lys122 and Lys128, which are supposed to be located in an active site liganding loop. The remaining five sites, such as Lys-Glu, Lys-Asp, Lys-His, and Lys-Thr are relatively inactive as to the formation of either a Schiff base or an Amadori adduct.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验