Suppr超能文献

可解释机器学习模型揭示了其在识别导管消融后阵发性心房颤动高复发风险患者时的决策过程。

Explainable machine learning model reveals its decision-making process in identifying patients with paroxysmal atrial fibrillation at high risk for recurrence after catheter ablation.

机构信息

Department of Cardiology, Xijing Hospital, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China.

出版信息

BMC Cardiovasc Disord. 2023 Feb 17;23(1):91. doi: 10.1186/s12872-023-03087-0.

Abstract

BACKGROUND

A number of models have been reported for predicting atrial fibrillation (AF) recurrence after catheter ablation. Although many machine learning (ML) models were developed among them, black-box effect existed widely. It was always difficult to explain how variables affect model output. We sought to implement an explainable ML model and then reveal its decision-making process in identifying patients with paroxysmal AF at high risk for recurrence after catheter ablation.

METHODS

Between January 2018 and December 2020, 471 consecutive patients with paroxysmal AF who had their first catheter ablation procedure were retrospectively enrolled. Patients were randomly assigned into training cohort (70%) and testing cohort (30%). The explainable ML model based on Random Forest (RF) algorithm was developed and modified on training cohort, and tested on testing cohort. In order to gain insight into the association between observed values and model output, Shapley additive explanations (SHAP) analysis was used to visualize the ML model.

RESULTS

In this cohort, 135 patients experienced tachycardias recurrences. With hyperparameters adjusted, the ML model predicted AF recurrence with an area under the curve of 66.7% in the testing cohort. Summary plots listed the top 15 features in descending order and preliminary showed the association between features and outcome prediction. Early recurrence of AF showed the most positive impact on model output. Dependence plots combined with force plots showed the impact of single feature on model output, and helped determine high risk cut-off points. The thresholds of CHADS-VASc score, systolic blood pressure, AF duration, HAS-BLED score, left atrial diameter and age were 2, 130 mmHg, 48 months, 2, 40 mm and 70 years, respectively. Decision plot recognized significant outliers.

CONCLUSION

An explainable ML model effectively revealed its decision-making process in identifying patients with paroxysmal atrial fibrillation at high risk for recurrence after catheter ablation by listing important features, showing the impact of every feature on model output, determining appropriate thresholds and identifying significant outliers. Physicians can combine model output, visualization of model and clinical experience to make better decision.

摘要

背景

已经有许多模型被报道用于预测导管消融后心房颤动(AF)的复发。尽管其中许多机器学习(ML)模型已经开发出来,但普遍存在黑盒效应。变量如何影响模型输出总是很难解释。我们试图实现一个可解释的 ML 模型,并揭示其在识别导管消融后阵发性 AF 复发高风险患者中的决策过程。

方法

回顾性纳入 2018 年 1 月至 2020 年 12 月间首次接受导管消融术的 471 例阵发性 AF 连续患者。患者被随机分配到训练队列(70%)和测试队列(30%)。基于随机森林(RF)算法的可解释 ML 模型在训练队列中进行开发和修改,并在测试队列中进行测试。为了深入了解观察值与模型输出之间的关系,采用 Shapley 加法解释(SHAP)分析来可视化 ML 模型。

结果

在该队列中,有 135 例患者出现心律失常复发。经过调整超参数,ML 模型在测试队列中预测 AF 复发的曲线下面积为 66.7%。汇总图按降序列出了前 15 个特征,并初步显示了特征与预测结果之间的关联。AF 早期复发对模型输出的影响最大。依赖图与力图相结合显示了单个特征对模型输出的影响,并有助于确定高危截止点。CHADS-VASc 评分、收缩压、AF 持续时间、HAS-BLED 评分、左心房直径和年龄的阈值分别为 2、130mmHg、48 个月、2、40mm 和 70 岁。决策图识别出显著异常值。

结论

一个可解释的 ML 模型通过列出重要特征、显示每个特征对模型输出的影响、确定适当的阈值和识别显著异常值,有效地揭示了其在识别导管消融后阵发性心房颤动复发高风险患者中的决策过程。医生可以结合模型输出、模型可视化和临床经验做出更好的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720b/9936738/c83d1a783a99/12872_2023_3087_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验