Suppr超能文献

使用可解释的混合效应机器学习对1型糖尿病患者运动期间及运动后的低血糖风险进行建模。

Modeling risk of hypoglycemia during and following physical activity in people with type 1 diabetes using explainable mixed-effects machine learning.

作者信息

Mosquera-Lopez Clara, Ramsey Katrina L, Roquemen-Echeverri Valentina, Jacobs Peter G

机构信息

Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.

Biostatistics and Design Program, Oregon Health & Science University, Portland, Oregon, USA.

出版信息

Comput Biol Med. 2023 Mar;155:106670. doi: 10.1016/j.compbiomed.2023.106670. Epub 2023 Feb 11.

Abstract

BACKGROUND

Physical activity (PA) can cause increased hypoglycemia (glucose <70 mg/dL) risk in people with type 1 diabetes (T1D). We modeled the probability of hypoglycemia during and up to 24 h following PA and identified key factors associated with hypoglycemia risk.

METHODS

We leveraged a free-living dataset from Tidepool comprised of glucose measurements, insulin doses, and PA data from 50 individuals with T1D (6448 sessions) for training and validating machine learning models. We also used data from the T1Dexi pilot study that contains glucose management and PA data from 20 individuals with T1D (139 session) for assessing the accuracy of the best performing model on an independent test dataset. We used mixed-effects logistic regression (MELR) and mixed-effects random forest (MERF) to model hypoglycemia risk around PA. We identified risk factors associated with hypoglycemia using odds ratio and partial dependence analysis for the MELR and MERF models, respectively. Prediction accuracy was measured using the area under the receiver operating characteristic curve (AUROC).

RESULTS

The analysis identified risk factors significantly associated with hypoglycemia during and following PA in both MELR and MERF models including glucose and body exposure to insulin at the start of PA, low blood glucose index 24 h prior to PA, and PA intensity and timing. Both models showed overall hypoglycemia risk peaking 1 h after PA and again 5-10 h after PA, which is consistent with the hypoglycemia risk pattern observed in the training dataset. Time following PA impacted hypoglycemia risk differently across different PA types. Accuracy of hypoglycemia prediction using the fixed effects of the MERF model was highest when predicting hypoglycemia during the first hour following the start of PA (AUROC = 0.83 and AUROC = 0.86) and decreased when predicting hypoglycemia in the 24 h after PA (AUROC = 0.66 and AUROC = 0.68).

CONCLUSION

Hypoglycemia risk after the start of PA can be modeled using mixed-effects machine learning to identify key risk factors that may be used within decision support and insulin delivery systems. We published the population-level MERF model online for others to use.

摘要

背景

体育活动(PA)会增加1型糖尿病(T1D)患者低血糖(血糖<70mg/dL)的风险。我们对体育活动期间及之后长达24小时内发生低血糖的概率进行了建模,并确定了与低血糖风险相关的关键因素。

方法

我们利用了来自Tidepool的一个自由生活数据集,该数据集包含50名T1D患者的葡萄糖测量值、胰岛素剂量和体育活动数据(6448个时段),用于训练和验证机器学习模型。我们还使用了T1Dexi试点研究的数据,该研究包含20名T1D患者的葡萄糖管理和体育活动数据(139个时段),用于在独立测试数据集上评估表现最佳的模型的准确性。我们使用混合效应逻辑回归(MELR)和混合效应随机森林(MERF)对体育活动前后的低血糖风险进行建模。我们分别使用优势比和偏倚分析,为MELR和MERF模型确定与低血糖相关的风险因素。使用受试者操作特征曲线下面积(AUROC)来衡量预测准确性。

结果

分析确定了MELR和MERF模型中与体育活动期间及之后低血糖显著相关的风险因素,包括体育活动开始时的葡萄糖和身体胰岛素暴露、体育活动前24小时的低血糖指数,以及体育活动强度和时间。两个模型均显示总体低血糖风险在体育活动后1小时达到峰值,并在体育活动后5-10小时再次达到峰值,这与训练数据集中观察到的低血糖风险模式一致。体育活动后的时间对不同类型体育活动的低血糖风险影响不同。使用MERF模型的固定效应预测低血糖时,在体育活动开始后的第一小时内预测准确性最高(AUROC = 0.83和AUROC = 0.86),而在体育活动后24小时内预测低血糖时准确性降低(AUROC = 0.66和AUROC = 0.68)。

结论

体育活动开始后的低血糖风险可以使用混合效应机器学习进行建模,以识别可能在决策支持和胰岛素输送系统中使用的关键风险因素。我们在网上发布了人群水平的MERF模型供其他人使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验