Suppr超能文献

使用 80kVp 和深度学习图像重建技术降低超重患者冠状动脉 CT 血管造影中的辐射和对比剂量。

Reducing both radiation and contrast doses for overweight patients in coronary CT angiography with 80-kVp and deep learning image reconstruction.

机构信息

Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.

Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Eur J Radiol. 2023 Apr;161:110736. doi: 10.1016/j.ejrad.2023.110736. Epub 2023 Feb 10.

Abstract

PURPOSE

To investigate the use of an 80-kVp tube voltage combined with a deep learning image reconstruction (DLIR) algorithm in coronary CT angiography (CCTA) for overweight patients to reduce radiation and contrast doses in comparison with the 120-kVp protocol and adaptive statistical iterative reconstruction (ASIR-V).

METHODS

One hundred consecutive CCTA patients were prospectively enrolled and randomly divided into a low-dose group (n = 50) with 80-kVp, smart mA for noise index (NI) of 36 HU, contrast dose rate of 18 mgI/kg/s and DLIR and 60 % ASIR-V and a standard-dose group (n = 50) with 120-kVp, smart mA for NI of 25 HU, contrast dose rate of 32 mgI/kg/s and 60 % ASIR-V. The radiation and contrast dose, subjective image quality score, attenuation values, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were compared.

RESULTS

The low-dose group achieved a significant reduction in the effective radiation dose (1.01 ± 0.45 mSv vs 1.85 ± 0.40 mSv, P < 0.001) and contrast dose (33.69 ± 3.87 mL vs 59.11 ± 5.60 mL, P < 0.001) compared to the standard-dose group. The low-dose group with DLIR presented similar enhancement but lower noise, higher SNR and CNR and higher subjective quality scores than the standard-dose group. Moreover, the same patient comparison in the low-dose group between different reconstructions showed that DLIR images had slightly and consistently higher CT values in small vessels, indicating better defined vessels, much lower image noise, higher SNR and CNR and higher subjective quality scores than ASIR-V images (all P < 0.001).

CONCLUSIONS

The application of 80-kVp and DLIR allows for significant radiation and dose reduction while further improving image quality in CCTA for overweight patients.

摘要

目的

研究在超重患者冠状动脉 CT 血管造影(CCTA)中使用 80kVp 管电压结合深度学习图像重建(DLIR)算法,与 120kVp 协议和自适应统计迭代重建(ASIR-V)相比,降低辐射和对比剂量。

方法

前瞻性纳入 100 例连续 CCTA 患者,随机分为低剂量组(n=50)和标准剂量组(n=50)。低剂量组采用 80kVp、噪声指数(NI)为 36HU 的智能毫安、对比剂剂量率为 18mgI/kg/s 和 DLIR、60%ASIR-V,标准剂量组采用 120kVp、NI 为 25HU、对比剂剂量率为 32mgI/kg/s 和 60%ASIR-V。比较两组的辐射剂量和对比剂量、主观图像质量评分、衰减值、噪声、信噪比(SNR)和对比噪声比(CNR)。

结果

低剂量组有效辐射剂量(1.01±0.45mSv 比 1.85±0.40mSv,P<0.001)和对比剂量(33.69±3.87mL 比 59.11±5.60mL,P<0.001)均显著降低。与标准剂量组相比,低剂量组加用 DLIR 后增强程度相似,但噪声更低,SNR 和 CNR 更高,主观质量评分更高。此外,在低剂量组中,不同重建方法的同一患者比较显示,DLIR 图像在小血管中具有略高且一致的 CT 值,提示血管边界更清晰,图像噪声更低,SNR 和 CNR 更高,主观质量评分更高(均 P<0.001)。

结论

在超重患者 CCTA 中应用 80kVp 和 DLIR 可显著降低辐射和剂量,同时进一步提高图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验