College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, PR China.
College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, PR China.
J Colloid Interface Sci. 2023 Jun;639:49-58. doi: 10.1016/j.jcis.2023.02.066. Epub 2023 Feb 14.
In this work, a metal-doping strategy was put forward to construct metal-doped borophene and the corresponding zero-dimensional boron. Through theoretical calculations, Ag acts as the optimal metal ions to prepare Ag-doped borophene derived boron quantum dots (Ag-BQDs). As predicted theoretically, doping of Ag endows borophene with enhanced stability of electronic structures. The newly emerging Ag-BQDs were experimentally acquired from ultrasonic-assisted liquid-phase exfoliation of bulk boron and solvothermal treatments. According to theoretical and experimental studies, the improved stability and fluorescence (FL) of Ag-BQDs are due to the formation of strong B-Ag bonding to competitively suppress B-O bonding. The function enables the maximal protection of borophene electronic structures from oxidization, destruction and reconfiguration. Because of Ag-BQDs with relatively higher colloidal and FL stability over BQDs, potential applications of Ag-BQDs were further explored in promising fields toward FL visualization in aqueous solutions and on filter paper, employed as a chemosensor of Fe for FL sensing and visual detection at the solid/liquid phases, utilized for multiple FL bio-imaging at the levels of fresh plants, live animals and live cells of fresh plants, and applied to photocatalytic degradation of organic dyes and anticancer drug. Experimental results demonstrate excellent performances of Ag-BQDs in multiple applications, including versatile FL sensing and visual detection, unique multi-channel FL bio-imaging and visible-light-driven photodegradation of organic pollutants, toxic and harmful substances. This work can promote the development of metal-ion-doped low- dimensional nanomaterials with improved stability and FL properties for significant applications.
在这项工作中,提出了一种金属掺杂策略来构建金属掺杂的硼烯和相应的零维硼。通过理论计算,Ag 被认为是制备 Ag 掺杂硼烯衍生的硼量子点(Ag-BQDs)的最佳金属离子。正如理论预测的那样,Ag 的掺杂赋予了硼烯更稳定的电子结构。通过对块状硼的超声辅助液相剥离和溶剂热处理,从实验上获得了新出现的 Ag-BQDs。根据理论和实验研究,Ag-BQDs 的稳定性和荧光(FL)的提高是由于形成了强的 B-Ag 键,从而竞争性地抑制了 B-O 键。该功能使硼烯的电子结构最大程度地免受氧化、破坏和重构的影响。由于 Ag-BQDs 相对于 BQDs 具有更高的胶体和 FL 稳定性,因此进一步探索了 Ag-BQDs 在有望的领域中的潜在应用,例如在水溶液和滤纸上进行 FL 可视化、作为 FL 传感和固态/液态的可见检测的 Fe 化学传感器、用于在新鲜植物、活体动物和活体植物细胞水平进行多通道 FL 生物成像、以及用于光催化降解有机染料和抗癌药物。实验结果证明了 Ag-BQDs 在多种应用中的优异性能,包括多功能 FL 传感和可视化检测、独特的多通道 FL 生物成像以及可见光驱动的有机污染物、有毒有害物质的光降解。这项工作可以促进具有改进的稳定性和 FL 性能的金属离子掺杂的低维纳米材料的发展,为重要的应用提供支持。