Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7514 AE, Enschede, The Netherlands.
Research Center Jülich, Institute of Bio- and Geosciences: Agrosphere (IBG-3), 52428, Jülich, Germany.
Sci Data. 2023 Feb 17;10(1):101. doi: 10.1038/s41597-023-02011-7.
Although soil moisture is a key factor of hydrologic and climate applications, global continuous high resolution soil moisture datasets are still limited. Here we use physics-informed machine learning to generate a global, long-term, spatially continuous high resolution dataset of surface soil moisture, using International Soil Moisture Network (ISMN), remote sensing and meteorological data, guided with the knowledge of physical processes impacting soil moisture dynamics. Global Surface Soil Moisture (GSSM1 km) provides surface soil moisture (0-5 cm) at 1 km spatial and daily temporal resolution over the period 2000-2020. The performance of the GSSM1 km dataset is evaluated with testing and validation datasets, and via inter-comparisons with existing soil moisture products. The root mean square error of GSSM1 km in testing set is 0.05 cm/cm, and correlation coefficient is 0.9. In terms of the feature importance, Antecedent Precipitation Evaporation Index (APEI) is the most important significant predictor among 18 predictors, followed by evaporation and longitude. GSSM1 km product can support the investigation of large-scale climate extremes and long-term trend analysis.
尽管土壤湿度是水文和气候应用的关键因素,但全球连续的高分辨率土壤湿度数据集仍然有限。在这里,我们使用物理信息机器学习,利用国际土壤湿度网络(ISMN)、遥感和气象数据,并结合影响土壤湿度动态的物理过程知识,生成一个全球、长期、空间连续的高分辨率地表土壤湿度数据集。全球地表土壤湿度(GSSM1km)提供了 2000-2020 年期间 1km 空间分辨率和每日时间分辨率的地表土壤湿度(0-5cm)。通过测试数据集和验证数据集以及与现有土壤湿度产品的对比,对 GSSM1km 数据集的性能进行了评估。在测试集中,GSSM1km 的均方根误差为 0.05cm/cm,相关系数为 0.9。就特征重要性而言,在 18 个预测因子中,前期降水蒸散指数(APEI)是最重要的显著预测因子,其次是蒸散和经度。GSSM1km 产品可以支持对大规模气候极端事件和长期趋势分析的研究。