Koldasbayeva Diana, Tregubova Polina, Gasanov Mikhail, Zaytsev Alexey, Petrovskaia Anna, Burnaev Evgeny
Skolkovo Institute of Science and Technology, Moscow, Russia.
Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China.
Nat Commun. 2024 Dec 19;15(1):10700. doi: 10.1038/s41467-024-55240-8.
Machine learning-based geospatial applications offer unique opportunities for environmental monitoring due to domains and scales adaptability and computational efficiency. However, the specificity of environmental data introduces biases in straightforward implementations. We identify a streamlined pipeline to enhance model accuracy, addressing issues like imbalanced data, spatial autocorrelation, prediction errors, and the nuances of model generalization and uncertainty estimation. We examine tools and techniques for overcoming these obstacles and provide insights into future geospatial AI developments. A big picture of the field is completed from advances in data processing in general, including the demands of industry-related solutions relevant to outcomes of applied sciences.
基于机器学习的地理空间应用由于其在领域和尺度上的适应性以及计算效率,为环境监测提供了独特的机会。然而,环境数据的特殊性在直接应用中会引入偏差。我们确定了一个简化的流程来提高模型准确性,解决诸如数据不平衡、空间自相关性、预测误差以及模型泛化和不确定性估计的细微差别等问题。我们研究了克服这些障碍的工具和技术,并对未来地理空间人工智能的发展提供了见解。从总体数据处理的进展,包括与应用科学成果相关的行业解决方案的需求,完成了该领域的全景描绘。