Department of Chemistry, Physics and Astronomy, Georgia College and State University, Milledgeville, GA 31061, USA.
Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, TX 77058, USA.
Sensors (Basel). 2023 Nov 9;23(22):9080. doi: 10.3390/s23229080.
Human exposure to acute and chronic levels of heavy metal ions are linked with various health issues, including reduced children's intelligence quotients, developmental challenges, cancers, hypertension, immune system compromises, cytotoxicity, oxidative cellular damage, and neurological disorders, among other health challenges. The potential environmental HMI contaminations, the biomagnification of heavy metal ions along food chains, and the associated risk factors of heavy metal ions on public health safety are a global concern of top priority. Hence, developing low-cost analytical protocols capable of rapid, selective, sensitive, and accurate detection of heavy metal ions in environmental samples and consumable products is of global public health interest. Conventional flame atomic absorption spectroscopy, graphite furnace atomic absorption spectroscopy, atomic emission spectroscopy, inductively coupled plasma-optical emission spectroscopy, inductively coupled plasma-mass spectroscopy, X-ray diffractometry, and X-ray fluorescence have been well-developed for HMIs and trace element analysis with excellent but varying degrees of sensitivity, selectivity, and accuracy. In addition to high instrumental running and maintenance costs and specialized personnel training, these instruments are not portable, limiting their practicality for on-demand, in situ, field study, or point-of-need HMI detection. Increases in the use of electrochemical and colorimetric techniques for heavy metal ion detections arise because of portable instrumentation, high sensitivity and selectivity, cost-effectiveness, small size requirements, rapidity, and visual detection of colorimetric nanosensors that facilitate on-demand, in situ, and field heavy metal ion detections. This review highlights the new approach to low-cost, rapid, selective, sensitive, and accurate detection of heavy metal ions in ecosystems (soil, water, air) and consumable products. Specifically, the review highlights low-cost, portable, and recent advances in smartphone-operated screen-printed electrodes (SPEs), plastic chip SPES, and carbon fiber paper-based nanosensors for environmental heavy metal ion detection. In addition, the review highlights recent advances in colorimetric nanosensors for heavy metal ion detection requirements. The review provides the advantages of electrochemical and optical nanosensors over the conventional methods of HMI analyses. The review further provides in-depth coverage of the detection of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) ions in the ecosystem, with emphasis on environmental and biological samples. In addition, the review discusses the advantages and challenges of the current electrochemical and colorimetric nanosensors protocol for heavy metal ion detection. It provides insight into the future directions in the use of the electrochemical and colorimetric nanosensors protocol for heavy metal ion detection.
人类暴露于重金属离子的急性和慢性水平与各种健康问题有关,包括儿童智商降低、发育挑战、癌症、高血压、免疫系统受损、细胞毒性、氧化细胞损伤和神经紊乱等。潜在的环境重金属离子污染、食物链中重金属离子的生物放大作用以及重金属离子对公共健康安全的相关风险因素是全球首要关注的问题。因此,开发能够快速、选择性、灵敏和准确地检测环境样品和消费品中的重金属离子的低成本分析方案是全球公共卫生的关注重点。传统的火焰原子吸收光谱法、石墨炉原子吸收光谱法、原子发射光谱法、电感耦合等离子体-光学发射光谱法、电感耦合等离子体质谱法、X 射线衍射法和 X 射线荧光法已经为重金属离子和微量元素分析得到了很好的发展,具有优异但不同程度的灵敏度、选择性和准确性。除了仪器运行和维护成本高以及需要专门的人员培训外,这些仪器不便于携带,限制了它们在按需、现场、现场研究或即时需要时进行重金属离子检测的实用性。电化学和比色技术在重金属离子检测中的应用增加是因为仪器便携、灵敏度和选择性高、成本效益高、体积要求小、快速、比色纳米传感器的可视化检测促进了按需、现场和现场重金属离子检测。本文综述了低成本、快速、选择性、灵敏和准确地检测生态系统(土壤、水、空气)和消费品中的重金属离子的新方法。具体来说,本文综述了低成本、便携和最新的智能手机操作丝网印刷电极(SPEs)、塑料芯片 SPEs 和碳纤维纸基纳米传感器在环境重金属离子检测方面的进展。此外,本文还综述了比色纳米传感器在重金属离子检测要求方面的最新进展。本文综述了电化学和光学纳米传感器相对于重金属离子分析常规方法的优势。本文进一步深入探讨了砷(As)、镉(Cd)、铬(Cr)、铜(Cu)、汞(Hg)、锰(Mn)、镍(Ni)、铅(Pb)和锌(Zn)离子在生态系统中的检测,重点是环境和生物样本。此外,本文还讨论了当前电化学和比色纳米传感器协议用于重金属离子检测的优势和挑战。本文为电化学和比色纳米传感器协议在重金属离子检测中的未来方向提供了深入的了解。
Sensors (Basel). 2023-11-9
Sensors (Basel). 2020-11-28
Chem Commun (Camb). 2021-7-28
Analyst. 2018-9-10
Biosensors (Basel). 2025-4-29
Micromachines (Basel). 2024-3-4
Polymers (Basel). 2023-7-30
Int J Mol Sci. 2023-5-26
Sensors (Basel). 2023-4-20
Sensors (Basel). 2023-3-2
Nanomaterials (Basel). 2022-12-13
Biosensors (Basel). 2022-11-28